The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084068 a(1) = 1, a(2) = 2; a(2*k) = 2*a(2*k-1) - a(2*k-2), a(2*k+1) = 4*a(2*k) - a(2*k-1). 18

%I #59 Feb 13 2024 06:59:22

%S 1,2,7,12,41,70,239,408,1393,2378,8119,13860,47321,80782,275807,

%T 470832,1607521,2744210,9369319,15994428,54608393,93222358,318281039,

%U 543339720,1855077841,3166815962,10812186007,18457556052,63018038201,107578520350

%N a(1) = 1, a(2) = 2; a(2*k) = 2*a(2*k-1) - a(2*k-2), a(2*k+1) = 4*a(2*k) - a(2*k-1).

%C The upper principal and intermediate convergents to 2^(1/2), beginning with 2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence; essentially, numerators=A143609 and denominators=A084068. - _Clark Kimberling_, Aug 27 2008

%C From _Peter Bala_, Mar 23 2018: (Start)

%C Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. We have

%C a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and

%C a(2*n) = (1/sqrt(2))*(1 o 1 o ... o 1) (2*n terms). Cf. A049629, A108412 and A143608.

%C This is a fourth-order divisibility sequence. Indeed, a(2*n) = U(2*n)/sqrt(2) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ).

%C It appears that this sequence consists of those numbers m such that 2*m^2 = floor( m*sqrt(2) * ceiling(m*sqrt(2)) ). Cf. A084069. (End)

%C Conjecture: a(n) is the earliest occurrence of n in A348295, which is to say, a(n) is the least m such that Sum_{k=1..m} (-1)^(floor(k*(sqrt(2)-1))) = Sum_{k=1..m} (-1)^A097508(k) = n. This has been confirmed for the first 32 terms by _Chai Wah Wu_, Oct 21 2021. - _Jianing Song_, Jul 16 2022

%D Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

%H Indranil Ghosh, <a href="/A084068/b084068.txt">Table of n, a(n) for n = 1..2608</a>

%H Clark Kimberling, <a href="http://dx.doi.org/10.1007/s000170050020">Best lower and upper approximates to irrational numbers</a>, Elemente der Mathematik, 52 (1997) 122-126.

%H D. H. Lehmer, <a href="http://www.jstor.org/stable/1968235">An extended theory of Lucas' functions</a>, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448.

%H E. W. Weisstein, <a href="http://mathworld.wolfram.com/LehmerNumber.html">MathWorld: Lehmer Number</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,0,-1).

%F "A Diofloortin equation": n such that 2*n^2=floor(n*sqrt(2)*ceiling(n*sqrt(2))).

%F a(n)*a(n+3) = -2 + a(n+1)*a(n+2).

%F From _Paul Barry_, Jun 06 2006: (Start)

%F G.f.: x(1+x)^2/(1-6x^2+x^4);

%F a(n) = ((sqrt(2)+1)^n-(sqrt(2)-1)^n)((sqrt(2)/8-1/4)*(-1)^n+sqrt(2)/8+1/4);

%F a(n+1) = Sum_{k=0..floor((n+1)/2)} 2^k*(C(n+1,2k)-C(n,2k+1)*(1-(-1)^n)/2. (End)

%F A000129(n+1) = A079496(n) + a(n). - _Gary W. Adamson_, Sep 18 2007

%F Equals A133566 * A000129, where A000129 = the Pell sequence. - _Gary W. Adamson_, Sep 18 2007

%F From _Peter Bala_, Mar 23 2018: (Start)

%F a(2*n + 2) = a(2*n + 1) + sqrt( (1 + a(2*n + 1)^2)/2 ).

%F a(2*n + 1) = 2*a(2*n) + sqrt( (1 + 2*a(2*n)^2) ).

%F More generally,

%F a(2*n+2*m+1) = sqrt(2)*a(2*n) o a(2*m+1), where o is the binary operation defined above, that is,

%F a(2*n+2*m+1) = sqrt(2)*a(2*n)*sqrt(1 + a(2*m+1)^2) + a(2*m+1)*sqrt(1 + 2*a(2*n)^2).

%F sqrt(2)*a(2*(n + m)) = (sqrt(2)*a(2*n)) o (sqrt(2)*a(2*m)), that is,

%F a(2*n+2*m) = a(2*n)*sqrt(1 + 2*a(2*m)^2) + a(2*m)*sqrt(1 + 2*a(2*n)^2).

%F sqrt(1 + 2*a(2*n)^2) = A001541(n).

%F 1 + 2*a(2*n)^2 = A055792(n+1).

%F a(2*n) - a(2*n-1) = A001653(n).

%F (1 + a(2*n+1)^2)/2 = A008844(n).

%F (End)

%F a(n) = A000129(n) for even n and A001333(n) for odd n. - _R. J. Mathar_, Oct 15 2021

%p a := proc (n) if `mod`(n, 2) = 1 then (1/2)*(sqrt(2) + 1)^n - (1/2)*(sqrt(2) - 1)^n else (1/2)*((sqrt(2) + 1)^n - (sqrt(2) - 1)^n)/sqrt(2) end if;

%p end proc:

%p seq(simplify(a(n)), n = 1..30); # _Peter Bala_, Mar 25 2018

%t a[n_] := ((Sqrt[2]+1)^n - (Sqrt[2]-1)^n) ((-1)^n(Sqrt[2]-2) + (Sqrt[2]+2))/8;

%t Table[Simplify[a[n]], {n, 30}] (* after _Paul Barry_, _Peter Luschny_, Mar 29 2018 *)

%o (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^(n-1)*[1;2;7;12])[1,1] \\ _Charles R Greathouse IV_, Jun 20 2015

%Y Bisections are A001542 and A002315.

%Y Cf. A084069, A084070, A133566, A079496, A001541, A001653, A008844, A055792, A049629, A108412, A143608.

%K nonn,easy

%O 1,2

%A _Benoit Cloitre_, May 10 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 15:23 EDT 2024. Contains 372738 sequences. (Running on oeis4.)