The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083281 Decimal expansion of h = Product_{p prime}(sqrt(p(p-1))*log(1/(1-1/p))). 2

%I #25 Jun 13 2021 05:07:14

%S 9,6,9,2,7,6,9,4,3,8,2,7,4,9,1,6,3,0,7,1,6,9,5,3,7,1,4,7,2,0,9,0,7,3,

%T 2,2,6,6,2,1,3,6,8,8,6,3,8,4,9,1,6,2,1,8,1,6,1,7,8,5,8,8,7,5,1,9,5,0,

%U 5,7,0,0,2,8,3,8,7,4,0,1,9,7,3,4,7,7,8,6,5,0,8,3,3,7,3,4,2,7,6,6,5,0,9,4,8,9

%N Decimal expansion of h = Product_{p prime}(sqrt(p(p-1))*log(1/(1-1/p))).

%C Arises in formulas like: Sum_{k<=x} 1/tau(kd) = hx/sqrt(Pi*log(x))*{ g(d)+O((3/4)^omega(d)/log(x)) } where g satisfies Sum_{d<=x} g(d))=x/h/sqrt(Pi*log(x))*{ 1+O(1/log(x)) }.

%C The logarithm of the value has an expansion -P(2)/24 -P(3)/24 -109*P(4)/2880 -49*P(5)/1440-... in terms of the prime zeta functions P(.). - _R. J. Mathar_, Jan 31 2009

%C The average order of 1/tau(k) (where tau(k) is the number of divisors of k, A000005), Sum_{k<=x} 1/tau(k) ~ h*x/sqrt(Pi*log(x)), was found by Ramanujan in 1916 and was proven by Wilson in 1923. - _Amiram Eldar_, Jun 19 2019

%D G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, collection SMF no. 1, 1995, p. 210.

%H S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram17.pdf">Some formulae in the analytic theory of numbers</a>, Messenger of Mathematics, Vol. 45 (1916), pp. 81-84.

%H B. M. Wilson, <a href="https://doi.org/10.1112/plms/s2-21.1.235">Proofs of some formulae enunciated by Ramanujan</a>, Proceedings of the London Mathematical Society, s2-21 (1923), pp. 235-255.

%F Equals A345231 * sqrt(Pi). - _Vaclav Kotesovec_, Jun 13 2021

%e 0.96927694382749163071695371472090732266213688638491621816178588751950570028...

%t $MaxExtraPrecision = 1000; m = 1000; f[p_] := Sqrt[p*(p - 1)]*Log[p/(p - 1)]; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k], {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* _Amiram Eldar_, Jun 19 2019 *)

%o (PARI) prod(k=1,40000,sqrt(prime(k)*(prime(k)-1))*log(1/(1-1/prime(k))))

%Y Cf. A000005, A345231, A345288.

%K cons,nonn

%O 0,1

%A _Benoit Cloitre_, Jun 02 2003

%E 10 more digits from _R. J. Mathar_, Jan 31 2009

%E More terms from _Amiram Eldar_, Jun 19 2019

%E More digits from _Vaclav Kotesovec_, Jun 13 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 04:27 EDT 2024. Contains 373102 sequences. (Running on oeis4.)