The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073577 a(n) = 4*n^2 + 4*n - 1. 10

%I #122 Sep 13 2022 02:16:52

%S 7,23,47,79,119,167,223,287,359,439,527,623,727,839,959,1087,1223,

%T 1367,1519,1679,1847,2023,2207,2399,2599,2807,3023,3247,3479,3719,

%U 3967,4223,4487,4759,5039,5327,5623,5927,6239,6559,6887,7223,7567,7919,8279,8647

%N a(n) = 4*n^2 + 4*n - 1.

%C The sum of the squares of two consecutive terms multiplied (or divided) by 2 is always a perfect square. In general, numbers represented by the quadratic form a(n) = (2*i*n + j)^2 - 2*i^2 for any i and j have 2(a(n)^2 + a(n+1)^2)) and (a(n)^2 + a(n+1)^2)/2 as perfect squares: in this case, i=j=1.

%C The terms of this sequence may be seen to be 2 less than the odd squares. As such they run parallel to those in the square spiral as well as the Ulam square spiral. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Oct 01 2002

%C Primes in the sequence are in A028871. - _Russ Cox_, Aug 26 2019

%C The continued fraction expansion of sqrt(4*a(n)) is [4n+1; {1, n-1, 2, 2n, 2, n-1, 1, 8n+2}]. For n=1, this collapses to [5; {3, 2, 3, 10}]. - _Magus K. Chu_, Sep 12 2022

%H G. C. Greubel, <a href="/A073577/b073577.txt">Table of n, a(n) for n = 1..5000</a>

%H Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, <a href="https://doi.org/10.1016/j.exmath.2019.04.005">The Bateman-Horn Conjecture: Heuristics, History, and Applications</a>, Expositiones Mathematicae, Vol. 38, No. 4 (2020), pp. 430-479; <a href="https://arxiv.org/abs/1807.08899">arXiv preprint</a>, arXiv:1807.08899 [math.NT], 2018-2019. See 6.6.7, p. 36 (p. 35 in the preprint).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = FrobeniusNumber(2*n+1, 2*n+3). - _Darrell Minor_, Jul 29 2008

%F a(n) = 8*n + a(n-1) (with a(1)=7). - _Vincenzo Librandi_, Aug 08 2010

%F G.f.: x*(7+2*x-x^2)/(1-x)^3. - _Robert Israel_, Jan 13 2015

%F E.g.f.: 1 - (1-8*x-4*x^2)*exp(x). - _Robert Israel_, Jan 13 2015

%F a(n+1) = a(n) + A008590(n+1), a(1) = 7. - _Altug Alkan_, Sep 28 2015

%F a(n) = (2*n+1)+(2*n-1) + (2*n+1)*(2*n-1). - _J. M. Bergot_, Apr 17 2016

%F a(n) = (2*n+1)^2 - 2. - _Zhandos Mambetaliyev_, Jun 13 2017

%F From _Stefano Spezia_, Nov 04 2018: (Start)

%F L.g.f.: 4*x*(2+x)/(1+x)^2-log(1+x).

%F L.h.g.f.: -4*(-2+x)*x/(-1+x)^2+log(1-x).

%F (End)

%F Sum_{n>=1} 1/a(n) = 1 + sqrt(2)*Pi*tan(Pi/sqrt(2))/8. - _Amiram Eldar_, Jan 03 2021

%e a(2) = 8*2 + 7 = 23;

%e a(3) = 8*3 + 23 = 47;

%e a(4) = 8*4 + 47 = 79. - _Vincenzo Librandi_, Aug 08 2010

%p seq(4*n^2+4*n-1,n=1..100); # _Robert Israel_, Jan 13 2015

%t Table[4*n^2+4*n-1,{n,60}] (* _Vladimir Joseph Stephan Orlovsky_, Nov 18 2009 *)

%t LinearRecurrence[{3,-3,1},{7,23,47},50] (* _Harvey P. Dale_, Dec 04 2018 *)

%o (Maxima) A073577(n):=4*n^2+4*n-1$

%o makelist(A073577(n),n,1,30); /* _Martin Ettl_, Nov 01 2012 */

%o (PARI) vector(50, n, 4*n^2 + 4*n - 1) \\ _Michel Marcus_, Jan 14 2015

%o (Magma) [4*n^2 + 4*n - 1: n in [1..50]]; // _Wesley Ivan Hurt_, Apr 18 2016

%o (Python) for n in range(1,50): print(4*n**2+4*n-1, end=', ') # _Stefano Spezia_, Nov 01 2018

%o (GAP) List([1..50],n->4*n^2+4*n-1); # _Muniru A Asiru_, Nov 01 2018

%Y Cf. A008590, A028871, A214345.

%K nonn,easy

%O 1,1

%A M. N. Deshpande (dpratap(AT)nagpur.dot.net.in), Aug 27 2002

%E Edited and extended by _Henry Bottomley_, Oct 10 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 04:25 EDT 2024. Contains 372536 sequences. (Running on oeis4.)