The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073346 Table T(n,k) (listed antidiagonalwise in order T(0,0), T(1,0), T(0,1), T(2,0), T(1,1), ...) giving the number of rooted plane binary trees of size n and "contracted height" k. 12

%I #14 Apr 01 2017 20:57:58

%S 1,1,0,0,0,0,1,2,0,0,0,0,0,0,0,0,2,4,0,0,0,0,2,4,0,0,0,0,1,0,8,8,0,0,

%T 0,0,0,0,12,16,0,0,0,0,0,0,2,12,40,16,0,0,0,0,0,0,2,12,80,48,0,0,0,0,

%U 0,0,0,0,12,136,144,32,0,0,0,0,0,0,0,2,20,224,384,128,0,0,0,0,0,0,0,0,0,16

%N Table T(n,k) (listed antidiagonalwise in order T(0,0), T(1,0), T(0,1), T(2,0), T(1,1), ...) giving the number of rooted plane binary trees of size n and "contracted height" k.

%C The height of binary trees is computed here in the same way as in A073345, except that whenever a complete binary tree of (2^k)-1 nodes with all its leaves at the same level, i.e., one of the following trees:

%C ____________________\/\/\/\/_

%C _____________\/__\/__\/__\/__

%C ______________\__/____\_ /___

%C ____.____\/____\/______\/____ etc.

%C is encountered as a terminating subtree, it is regarded just a variant of . (an empty tree, a single leaf) and contributes nothing to the height of the tree.

%H H. Bottomley and A. Karttunen, <a href="/A073345/a073345.txt">Notes concerning diagonals of the square arrays A073345 and A073346.</a>

%F (See the Maple code below. Note that here we use the same convolution recurrence as with A073345, but only the initial conditions for the first two rows (k=0 and k=1) are different. Is there a nicer formula?)

%e The top-left corner of this square array:

%e 1 1 0 1 0 0 0 1 ...

%e 0 0 2 0 2 2 0 0 ...

%e 0 0 0 4 4 8 12 12 ...

%e 0 0 0 0 8 16 40 80 ...

%p A073346 := n -> A073346bi(A025581(n), A002262(n));

%p A073346bi := proc(n,k) option remember; local i,j; if(0 = k) then RETURN(A036987(n)); fi; if(0 = n) then RETURN(0); fi; 2 * add(A073346bi(n-i-1,k-1) * add(A073346bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073346bi(n-i-1,k-1) * add(A073346bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073346bi(floor((n-1)/2),k-1)^2) - (`if`((1=k),1,0))*A036987(n); end;

%p A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);

%p A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);

%Y Variant: A073345. The first row: A036987. Column sums: A000108. Diagonals: T(n, n) = A000007(n), T(n+1, n) = A000079(n), T(n+2, n) = A058922(n), T(n+3, n) = A074092(n) - [see the attached notes.].

%Y A073430 gives the upper triangular region of this array. Used to compute A073431. Entries on row k are all divisible by 2^k, thus dividing them out yields the array/triangle A074079/A074080.

%K nonn,tabl

%O 0,8

%A _Antti Karttunen_, Jul 31 2002

%E Sequence number in comments corrected

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 20:41 EDT 2024. Contains 372494 sequences. (Running on oeis4.)