The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072576 Limit of number of compositions (ordered partitions) of m into distinct parts where largest part is exactly m-n, for m sufficiently large given n. 5
1, 2, 2, 8, 8, 14, 38, 44, 68, 98, 242, 272, 440, 590, 878, 1772, 2180, 3194, 4466, 6320, 8432, 16190, 19262, 28580, 38276, 54314, 70730, 99152, 163328, 204230, 286670, 386132, 527132, 695978, 941738, 1220984, 1950128, 2390294, 3321398, 4342148, 5929532, 7616642, 10284410 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Consider an ordered 1 X n tiling of white tiles whose lengths are all distinct from each other, and whose sum is n. Now introduce into this tiling a red square. The resulting number of compositions is a(n). - Gregory L. Simay, Oct 25 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
a(n) = Sum_k (k+1)! * A060016(n,k) = Sum_k (k+1) * A072574(n,k).
a(n) = Sum_k (k+1)! * A008289(n,k). - Alois P. Heinz, Dec 12 2012
EXAMPLE
a(3) = 8 because for any m > 6 the number of compositions of e.g. m=7 into distinct parts where the largest part is exactly m-3 = 7-3 = 4 is eight, since 7 can be written as 4+3 = 4+2+1 = 4+1+2 = 3+4 = 2+4+1 = 2+1+4 = 1+4+2 = 1+2+4.
Note that in the example immediately above, 4 corresponds to the red square, since it is greater than--and therefore distinct from--parts 1,2 and 3, which correspond to the distinct white tiles. More generally, for the compositions of n having all parts distinct, the red square must correspond to a positive integer > n in order for the number of resulting compositions to be a(n). - Gregory L. Simay, Oct 25 2019
MAPLE
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
-> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end:
a:= proc(n) local l; l:= b(n, n): add( i! * l[i], i=1..nops(l)) end:
seq(a(n), n=0..50); # Alois P. Heinz, Dec 12 2012
MATHEMATICA
b[n_, i_] := If[n == 0, {1}, If[i<1, {}, Plus @@ PadRight[{b[n, i-1], If[i>n, {}, Prepend[b[n-i, i-1], 0]]}]]]; a[n_] := Module[{l}, l = b[n, n]; Sum[i!*l[[i]], {i, 1, Length[l]}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 31 2014, after Alois P. Heinz *)
PROG
(PARI)
N=66; q='q+O('q^N);
gf=sum(n=0, N, (n+1)!*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
Vec(gf)
/* Joerg Arndt, Oct 20 2012 */
CROSSREFS
Cf. A072575.
Cf. A032020. - Alois P. Heinz, Dec 12 2012
Sequence in context: A343984 A268342 A058524 * A271342 A060818 A082887
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jun 21 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 00:14 EDT 2024. Contains 372720 sequences. (Running on oeis4.)