login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066272 Number of anti-divisors of n. 142
0, 0, 1, 1, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 3, 2, 5, 4, 3, 3, 3, 5, 5, 2, 5, 3, 5, 5, 3, 3, 5, 6, 5, 3, 5, 2, 5, 7, 5, 4, 4, 5, 5, 3, 7, 5, 5, 3, 6, 6, 3, 7, 7, 3, 5, 3, 5, 7, 7, 6, 4, 5, 7, 2, 5, 5, 9, 7, 3, 5, 5, 6, 7, 5, 5, 5, 9, 5, 3, 5, 6, 7, 7, 4, 8, 5, 7, 7, 3, 5, 5, 5, 7, 9, 9, 1, 7, 8, 5, 4, 5, 7, 7, 7, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Anti-divisors are the numbers that do not divide a number by the largest possible margin. E.g. 20 has anti-divisors 3, 8 and 13. An alternative name for anti-divisor is unbiased non-divisors.
Definition: If an odd number i in the range 1 < i <= n divides N where N is any one of 2n-1, 2n or 2n+1 then d = N/i is called an anti-divisor of n. The numbers 1 and 2 have no anti-divisors.
Equivalently, an anti-divisor of n is a number d in the range [2,n-1] which does not divide n and is either a (necessarily odd) divisor of 2n-1 or 2n+1, or a (necessarily even) divisor of 2n.
Thus an anti-divisor of n is an integer d in [2,n-1] such that n == (d-1)/2, d/2, or (d+1)/2 (mod d), the class of d being -1, 0, or 1, respectively.
k is an anti-divisor of n if and only if 1 < k < n and | (n mod k) - k/2 | < 1. - Max Alekseyev, Jul 21 2007
The number of even anti-divisors of n is one less than the number of odd divisors of n; specifically, all but the largest odd divisor multiplied by the power of two dividing 2n (i.e., 2^A001151(n)). For example, the odd divisors of 18 are 1, 3, and 9, so the even anti-divisors of 18 are 1*4 = 4 and 3*4 = 12. - Franklin T. Adams-Watters, Sep 11 2009
2n-1 and 2n+1 are twin primes if and only if n has no odd anti-divisors (e.g., n=15 has no odd anti-divisors so 29 and 31 are twin primes). - Jon Perry, Sep 02 2012
Records are in A066464. - Robert G. Wilson v, Sep 03 2012
LINKS
Diana Mecum and T. D. Noe, Table of n, a(n) for n = 1..10000
Jon Perry, The Anti-divisor.
FORMULA
G.f.: Sum_{k>0} x^(3k) / (1 - x^(2k)) + (x^(3k+1) + x^(3k+2)) / (1 - x^(2k+1)). - Franklin T. Adams-Watters, Sep 11 2009
a(n) = A000005(2*n-1) + A000005(2*n+1) + A001227(n) - 5. - Max Alekseyev, Apr 27 2010
a(n) = Sum_{i=3..n} (i mod 2) * (3 + floor((2n-1)/i) - ceiling((2n-1)/i) + floor(2n/i) - ceiling(2n/i) + floor((2n+1)/i) - ceiling((2n+1)/i)). - Wesley Ivan Hurt, Aug 10 2014
Sum_{k=1..n} a(k) ~ (n/2) * (3*log(n) + 6*gamma - 13 + 7*log(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 19 2024
EXAMPLE
For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 18 are 4, 5, 7, 12. Therefore a(18) = 4.
MAPLE
antidivisors := proc(n)
local a, k;
a := {} ;
for k from 2 to n-1 do
if abs((n mod k)- k/2) < 1 then
a := a union {k} ;
end if;
end do:
a ;
end proc:
A066272 := proc(n)
nops(antidivisors(n)) ;
end proc:
seq(A066272(n), n=1..120); # R. J. Mathar, May 24 2010
MATHEMATICA
antid[ n_ ] := Select[ Union[ Join[ Select[ Divisors[ 2n - 1 ], OddQ[ # ] && # != 1 & ], Select[ Divisors[ 2n + 1 ], OddQ[ # ] && # != 1 & ], 2n / Select[ Divisors[ 2n ], OddQ[ # ] && # != 1 & ] ] ], # < n & ]; Table[ Length[ antid[ n ] ], {n, 1, 100} ]
f[n_] := Length@ Complement[ Sort@Join[ Select[ Union@ Flatten@ Divisors[{2 n - 1, 2 n + 1}], OddQ@ # && # < n &], Select[ Divisors[2 n], EvenQ@ # && # < n &]], Divisors@ n]; Array[f, 105] (* Robert G. Wilson v, Jul 17 2007 *)
nd[n_]:=Count[Range[2, n-1], _?(Abs[Mod[n, #]-#/2]<1&)]; Array[nd, 110] (* Harvey P. Dale, Jul 11 2012 *)
PROG
(PARI) al(n)=Vec(sum(k=1, n, (x^(3*k)+x*O(x^n))/(1-x^(2*k))+(x^(3*k+1)+x^(3*k+2)+x*O(x^n))/(1-x^(2*k+1)))) \\ Franklin T. Adams-Watters, Sep 11 2009
(PARI) a(n) = if(n>1, numdiv(2*n+1) + numdiv(2*n-1) + numdiv(n/2^valuation(n, 2)) - 5, 0) \\ Max Alekseyev, Apr 27 2010
(PARI) antidivisors(n)=select(t->n%t && t<n, concat(concat(divisors(2*n-1), divisors(2*n+1)), 2*divisors(n)))
a(n)=#antidivisors(n) \\ Charles R Greathouse IV, May 12 2016
(Python)
from sympy import divisors
def A066272(n):
return len([d for d in divisors(2*n) if n > d >=2 and n%d]) + len([d for d in divisors(2*n-1) if n > d >=2 and n%d]) + len([d for d in divisors(2*n+1) if n > d >=2 and n%d]) # Chai Wah Wu, Aug 11 2014
CROSSREFS
See A130799 for the anti-divisors.
Sequence in context: A191654 A327983 A205784 * A237130 A330524 A336037
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 31 2001
EXTENSIONS
More terms from Robert G. Wilson v, Jan 02 2002
More terms from Max Alekseyev, Apr 27 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 15:15 EDT 2024. Contains 371989 sequences. (Running on oeis4.)