login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063886 Number of n-step walks on a line starting from the origin but not returning to it. 38
1, 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432, 6864, 12870, 25740, 48620, 97240, 184756, 369512, 705432, 1410864, 2704156, 5408312, 10400600, 20801200, 40116600, 80233200, 155117520, 310235040, 601080390, 1202160780 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A Chebyshev transform of A007877(n+1). The g.f. is transformed to (1+x)/((1-x)(1+x^2)) under the mapping G(x)->(1/(1+x^2))G(1/(1+x^2)). - Paul Barry, Oct 12 2004
a(n-1) = 2*C(n-2, floor((n-2)/2)) is also the number of bit strings of length n in which the number of 00 substrings is equal to the number of 11 substrings. For example, when n = 4 we have 4 such bit strings: 0011, 0101, 1010, and 1100. - Angel Plaza, Apr 23 2009
Hankel transform is A120617. - Paul Barry, Aug 10 2009
The Hankel transform of a(n) is (-2)^C(n+1,2). The Hankel transform of (-1)^C(n+1,2)*a(n) is (-1)^C(n+1,2)*A164584(n). - Paul Barry, Aug 17 2009
For n > 1, a(n) is also the number of n-step walks starting from the origin and returning to it exactly once. - Geoffrey Critzer, Jan 24 2010
-a(n) is the Z-sequence for the Riordan array A130777. (See the W. Lang link under A006232 for A- and Z-sequences for Riordan matrices). - Wolfdieter Lang, Jul 12 2011
Number of subsets of {1,...,n} in which the even elements appear as often at even positions as at odd positions. - Gus Wiseman, Mar 17 2018
REFERENCES
D. Perrin, A conjecture on rational sequences, pp. 267-274 of R. M. Capocelli, ed., Sequences, Springer-Verlag, NY 1990.
LINKS
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Emeric Deutsch, Problem 11424, The American Mathematical Monthly, Vol. 116, No. 3 (March 2009), p. 277.
FORMULA
G.f.: sqrt((1+2*x)/(1-2*x)).
a(n+1) = 2*C(n, floor(n/2)) = 2*A001405(n); a(2n) = C(2n, n) = A000984(n) = 4*a(2n-2)-|A002420(n)| = 4*a(2n-2)-2*A000108(n-1) = 2*A001700(n-1); a(2n+1) = 2*a(2n) = A028329(n).
2*a(n) = A047073(n+1).
a(n) = Sum_{k=0..n} abs(A106180(n,k)). - Philippe Deléham, Oct 06 2006
a(n) = Sum_{k=0..n} (k+1)binomial(n, (n-k)/2) ( 1-cos((k+1)*Pi/2) (1+(-1)^(n-k))/(n+k+2) ). - Paul Barry, Oct 12 2004
G.f.: 1/(1-2*x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+ ... (continued fraction). - Paul Barry, Aug 10 2009
G.f.: 1 + 2*x/(G(0)-x+x^2) where G(k)= 1 - 2*x^2 - x^4/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 10 2012
D-finite with recurrence: n*a(n) = 2*a(n-1) + 4*(n-2)*a(n-2). - R. J. Mathar, Dec 03 2012
G.f.: 1/G(0), where G(k) = 1 - 2*x/(1 + 2*x/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
G.f.: G(0), where G(k) = 1 + 2*x/(1 - 2*x/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
G.f.: W(0)/2*(1+2*x), where W(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)/(x*(2*k+1))/W(k+1) )), abs(x) < 1/2; (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
a(n) = 2^n*Product_{k=0..n-1} (k/n + 1/n)^((-1)^k). - Peter Luschny, Dec 02 2013
G.f.: G(0), where G(k) = 1 + 2*x*(4*k+1)/((2*k+1)*(1+2*x) - (2*k+1)*(4*k+3)*x*(1+2*x)/((4*k+3)*x + (k+1)*(1+2*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 19 2014
From Peter Bala, Mar 29 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(- 1/2, n-k) = 2^n * A000246(n)/n!.
a(n) = (1/2^n) * binomial(2*n, n) * hypergeom([-1/2, -n], [1/2 - n], -1). (End)
EXAMPLE
a(4) = 6 because there are six length four walks that do not return to the origin: {-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}. There are also six such walks that return exactly one time: {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, 1, 2}, {1, 2, 1, 0}. - Geoffrey Critzer, Jan 24 2010
The a(5) = 12 subsets in which the even elements appear as often at even positions as at odd positions: {}, {1}, {3}, {5}, {1,3}, {1,5}, {2,4}, {3,5}, {1,2,4}, {1,3,5}, {2,4,5}, {1,2,4,5}. - Gus Wiseman, Mar 17 2018
MAPLE
seq(seq(binomial(2*j, j)*i, i=1..2), j=0..16); # Zerinvary Lajos, Apr 28 2007
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
4*a(n-2) +2*(a(n-1) -4*a(n-2))/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Feb 10 2014
MATHEMATICA
Table[Length[Select[Map[Accumulate, Strings[{-1, 1}, n]], Count[ #, 0] == 0 &]], {n, 0, 20}] (* Geoffrey Critzer, Jan 24 2010 *)
CoefficientList[Series[Sqrt[(1+2x)/(1-2x)], {x, 0, 40}], x] (* Harvey P. Dale, Apr 28 2016 *)
PROG
(Python)
from math import ceil
from sympy import binomial
def a(n):
if n==0: return 1
return 2*binomial(n-1, (n-1)//2)
print([a(n) for n in range(18)])
# David Nacin, Feb 29 2012
(PARI) a(n)=(n==0)+2*binomial(n-1, (n-1)\2)
(PARI) a(n) = 2^n*prod(k=0, n-1, (k/n+1/n)^((-1)^k)); \\ Michel Marcus, Dec 03 2013
(Magma) [1] cat [2*Binomial(n-1, Floor((n-1)/2)): n in [1..40]]; // G. C. Greubel, Jun 07 2023
(SageMath) [2*binomial(n-1, (n-1)//2) + int(n==0) for n in range(41)] # G. C. Greubel, Jun 07 2023
CROSSREFS
Apart from initial terms, same as A182027.
Cf. A307768 (complementary event).
Sequence in context: A059123 A001679 A030435 * A003000 A216957 A122536
KEYWORD
nonn,walk
AUTHOR
Henry Bottomley, Aug 28 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 10:53 EDT 2024. Contains 371936 sequences. (Running on oeis4.)