login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063658 The number of integers m in [1..n] for which gcd(m,n) is divisible by a square greater than 1. 2
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 5, 0, 0, 0, 6, 1, 0, 3, 7, 0, 0, 0, 8, 0, 0, 0, 12, 0, 0, 0, 10, 0, 0, 0, 11, 5, 0, 0, 12, 1, 2, 0, 13, 0, 6, 0, 14, 0, 0, 0, 15, 0, 0, 7, 16, 0, 0, 0, 17, 0, 0, 0, 24, 0, 0, 3, 19, 0, 0, 0, 20, 9, 0, 0, 21, 0, 0, 0, 22, 0, 10, 0, 23, 0, 0, 0, 24 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
Haviland (1944) proved that a(n) is the number of those arithmetic progressions among (m*n + s: m >= 0), s = 0, 1, ..., n-1, which contain a finite number of squarefree numbers. - Petros Hadjicostas, Jul 21 2019
LINKS
E. K. Haviland, An analogue of Euler's phi-function, Duke Math. J. 11 (1944), 869-872.
FORMULA
Dirichlet g.f.: zeta(s - 1)/zeta(s)*(zeta(s) - zeta(s)/zeta(2*s)). - Geoffrey Critzer, Mar 21 2015
a(n) = Sum_{d|n} phi(n/d) * (1 - mu(d)^2). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ n^2 * (1 - 90/Pi^4) / 2. - Vaclav Kotesovec, Feb 01 2019
EXAMPLE
For n=12 we find gcd(4,12), gcd(8,12) and gcd(12,12) divisible by 4, so a(12) = 3.
From Petros Hadjicostas, Jul 21 2019: (Start)
We have a(2) = 0 because each of the two arithmetic progressions (2*m: m >= 0) and (2*m + 1: m >= 0) contains infinitely many squarefree numbers.
We have a(3) = 0 because each of the three arithmetic progressions (3*m: m >= 0), (3*m + 1: m >= 0), and (3*m + 2: m >= 0) contains infinitely many squarefree numbers.
We have a(4) = 1 because, among the four arithmetic progressions (4*m: m >= 0), (4*m + 1: m >= 0), (4*m + 2: m >= 0), and (4*m + 3: m >= 0), only the first one contains a finite number of squarefree numbers (in this case, zero!).
We have a(8) = 2 because only the arithmetic progressions (8*m: m >= 0) and (8*m + 4: m >= 0) contain a finite number of squarefree numbers (in this case, zero!).
(End)
MATHEMATICA
f[list_, i_] := list[[i]]; nn = 100; a =Table[EulerPhi[n], {n, 1, nn}]; b =Table[If[Max[FactorInteger[n][[All, 2]]] > 1, 1, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Mar 21 2015 *)
Table[Sum[EulerPhi[n/d]*(1-MoebiusMu[d]^2), {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Feb 01 2019 *)
PROG
(PARI) { for (n=1, 2000, a=0; for (m=2, n, if (!issquarefree(gcd(m, n)), a++)); write("b063658.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 27 2009
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d) * (1 - moebius(d)^2)); \\ Daniel Suteu, Jun 27 2018
CROSSREFS
a(n) = n - A063659(n).
Sequence in context: A289358 A271698 A113263 * A237053 A364022 A363900
KEYWORD
nonn
AUTHOR
Floor van Lamoen, Jul 24 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Vladeta Jovovic and Dean Hickerson, Jul 26 2001
Name edited by Petros Hadjicostas, Jul 21 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 2 16:57 EDT 2024. Contains 372198 sequences. (Running on oeis4.)