The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062160 Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals. 5

%I #42 May 31 2024 14:41:55

%S 0,1,0,-1,1,0,1,0,1,0,-1,1,1,1,0,1,0,3,2,1,0,-1,1,5,7,3,1,0,1,0,11,20,

%T 13,4,1,0,-1,1,21,61,51,21,5,1,0,1,0,43,182,205,104,31,6,1,0,-1,1,85,

%U 547,819,521,185,43,7,1,0,1,0,171,1640,3277,2604,1111,300,57,8,1,0,-1,1,341,4921,13107,13021,6665,2101,455,73,9,1,0

%N Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.

%C For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - _Peter Bala_, May 30 2024

%H Seiichi Manyama, <a href="/A062160/b062160.txt">Antidiagonals n = 0..139, flattened</a>

%H M. Dukes and C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.

%F T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.

%F T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - _Max Alekseyev_, Sep 28 2021

%F G.f. of row n: x/((1+x) * (1-n*x)). - _Seiichi Manyama_, Apr 12 2019

%F E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - _Stefano Spezia_, Feb 20 2024

%F From _Peter Bala_, May 31 2024: (Start)

%F Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.

%F Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.

%F T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)

%e From _Seiichi Manyama_, Apr 12 2019: (Start)

%e Square array begins:

%e 0, 1, -1, 1, -1, 1, -1, 1, ...

%e 0, 1, 0, 1, 0, 1, 0, 1, ...

%e 0, 1, 1, 3, 5, 11, 21, 43, ...

%e 0, 1, 2, 7, 20, 61, 182, 547, ...

%e 0, 1, 3, 13, 51, 205, 819, 3277, ...

%e 0, 1, 4, 21, 104, 521, 2604, 13021, ...

%e 0, 1, 5, 31, 185, 1111, 6665, 39991, ...

%e 0, 1, 6, 43, 300, 2101, 14706, 102943, ... (End)

%p seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # _Peter Bala_, May 31 2024

%t T[n_,k_]:=(n^k - (-1)^k)/(n+1); Join[{0},Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,12}]]//Flatten (* _Stefano Spezia_, Feb 20 2024 *)

%Y Rows include A062157, A000035, A001045, A015518, A015521, A015531, A015540, A015552, A015565, A015577, A015585, A015592, A015609.

%Y Columns include A000004, A000012, A023443, A002061, A062158, A060884, A062159, A060888.

%Y Related to repunits in negative bases (cf. A055129 for positive bases).

%Y Main diagonal gives A081216.

%Y Cf. A109502.

%K sign,tabl,changed

%O 0,18

%A _Henry Bottomley_, Jun 08 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 01:58 EDT 2024. Contains 373206 sequences. (Running on oeis4.)