NO COMMON TERMS IN THE SEQUENCES $\sigma\left(p^{i}\right)$ AND $\sigma\left(p^{i+1}\right)$ AS p RUNS THROUGH THE PRIMES.

RICHARD J. MATHAR

Abstract

The sum-of-divisors function has distinct values when computed for a power of a prime and a next-higher power of a prime.

1. Sequences of the form $\sum_{i=0}^{e} p^{i}$

The well-known formula for the multiplicative function σ [1, A000203] is based on

$$
\begin{equation*}
\sigma\left(p^{e}\right)=\frac{p^{e+1}-1}{p-1}=1+p+p^{2}+\cdots+p^{e} \tag{1}
\end{equation*}
$$

for prime powers p^{e}. The associated sequences are A008864, A060800 and A131991A131993 for $p=1 \ldots 5$ as p runs through the primes.

It is easy to see (see the comment in A008864) that the sequence $\sigma(p)$ has no common terms with the sequences $\sigma\left(p^{e}\right)$ for any exponent $e \geq 2$. We show that also sequences with exponents that differ by one have no common terms, which means

$$
\begin{equation*}
\sigma\left(p^{e}\right) \neq \sigma\left(q^{e+1}\right), \forall p, q(\text { prime }) . \tag{2}
\end{equation*}
$$

Proof. The equation requires solution of the diophantine equation

$$
\begin{align*}
\sigma\left(p^{e}\right) & =\sigma\left(q^{e+1}\right) \tag{3}\\
1+p+p^{2}+\cdots p^{e} & =1+q+q^{2}+\cdots+q^{e-1} \tag{4}
\end{align*}
$$

for two primes p and q, where $p>q$ because the right hand side has one more term. Subtracing one and factoring yielss

$$
\begin{equation*}
p\left(1+p+p^{2}+\cdots p^{e-1}\right)=q\left(1+q+q^{2}+\cdots+q^{e}\right) \tag{5}
\end{equation*}
$$

Working modulo p or q means

$$
\begin{array}{rlr}
0 & \equiv q\left(1+q+q^{2}+\cdots+q^{e}\right) & (\bmod p) \\
0 \equiv p\left(1+p+p^{2}+\cdots+p^{e-1}\right) & (\bmod q) \tag{7}
\end{array}
$$

and because neither $0 \equiv q(\bmod p)$ nor $0 \equiv p(\bmod q)$ also

$$
\begin{array}{llr}
0 & \equiv 1+q+q^{2}+\cdots+q^{e} & (\bmod p) \tag{8}\\
0 \equiv 1+p+p^{2}+\cdots+p^{e-1} & (\bmod q)
\end{array}
$$

This requires

$$
\begin{equation*}
1+q+q^{2}+\cdots+q^{e}=\alpha p \wedge 1+p+p^{2}+\cdots+p^{e-1}=\beta q \tag{10}
\end{equation*}
$$

2010 Mathematics Subject Classification. 11D41, 11A05.
with two integers α and β. Insertion into (5) yields $\alpha=\beta$, so

$$
\begin{align*}
1+q+q^{2}+\cdots+q^{e} & =\alpha p \tag{11}\\
1+p+p^{2}+\cdots+p^{e-1} & =\alpha q \tag{12}
\end{align*}
$$

Subtracting both equations means

$$
\begin{equation*}
p-q+\left(p^{2}-q^{2}\right)+\cdots+\left(p^{e}-q^{e}\right)+\left(p^{e-1}-q^{e-1}\right)-q^{e}=-\alpha(p-q) \tag{13}
\end{equation*}
$$

All but the last terms on the left hand side are multiples of $p-q$, so working modulo $p-q$ requires $q^{e} \equiv 0(\bmod p-q)$, so

$$
\begin{equation*}
q^{e}=k(p-q) \tag{14}
\end{equation*}
$$

for some integer k. Due to the uniqueness of the prime factorization of q^{e}, the right hand side must split the factors as

$$
\begin{equation*}
k=q^{e-\delta} \wedge p-q=q^{\delta} \tag{15}
\end{equation*}
$$

for some integer $0 \leq \delta \leq e$. There are two cases
(1) p and q are odd primes, so the left hand side $p-q$ is even and the right hand side q^{δ} must also be even, which leads to a contradiction because then q must be even.
(2) $p=3$ and $q=2$. This special case is with (2) equivalent to

$$
\begin{gather*}
\frac{3^{e+1}-1}{3-1}=\frac{2^{e+2}-1}{2-1} \tag{16}\\
3^{e+1}-1=2\left(2^{e+2}-1\right) \tag{17}
\end{gather*}
$$

This has no solution as may be checked explicitly for small e and follows then because the left hand side grows like a power of 3 and the right hand side only with a power of 2 .

In summary, A008864 has no common term with A060800; A060800 has no common term with A131991 and so on.

References

1. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc. 50 (2003), no. 8, 912-915, http://oeis.org/. MR 1992789
URL: http://www.mpia.de/~mathar
Hoeschstr. 7, 52372 Kreuzau, Germany
