login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060594 Number of solutions to x^2 == 1 (mod n), that is, square roots of unity modulo n. 53
1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 4, 2, 2, 8, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 4, 4, 2, 2, 4, 8, 2, 4, 2, 4, 4, 2, 2, 8, 2, 2, 4, 4, 2, 2, 4, 8, 4, 2, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 8, 2, 2, 2, 8, 4, 2, 4, 8, 2, 4, 4, 4, 4, 2, 4, 8, 2, 2, 4, 4, 2, 4, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Sum_{k=1..n} a(k) appears to be asymptotic to C*n*log(n) with C = 0.6... - Benoit Cloitre, Aug 19 2002
a(q) is the number of real characters modulo q. - Benoit Cloitre, Feb 02 2003
Also number of real Dirichlet characters modulo n and Sum_{k=1..n}a(k) is asymptotic to (6/Pi^2)*n*log(n). - Steven Finch, Feb 16 2006
Let P(n) be the product of the numbers less than and coprime to n. By theorem 59 in Nagell (which is Gauss's generalization of Wilson's theorem): for n > 2, P == (-1)^(a(n)/2) (mod n). - T. D. Noe, May 22 2009
Shadow transform of A005563. - Michel Marcus, Jun 06 2013
For n > 2, a(n) = 2 iff n is in A033948. - Max Alekseyev, Jan 07 2015
For n > 1, number of square numbers on the main diagonal of an (n-1) X (n-1) square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 19 2021
REFERENCES
Trygve Nagell, Introduction to Number Theory, AMS Chelsea, 1981, p. 100. [From T. D. Noe, May 22 2009]
Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Cours spécialisé, 1995, Collection SMF, p. 260.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, pp. 196-197.
LINKS
Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
Emilia Mezzetti and Rosa Maria Miró-Roig, Togliatti systems and Galois coverings, arXiv preprint arXiv:1611.05620 [math.AG], 2016-2018. See Lemma 6.1.
N. J. A. Sloane, Transforms.
László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
FORMULA
If n == 0 (mod 8), a(n) = 2^(A005087(n) + 2); if n == 4 (mod 8), a(n) = 2^(A005087(n) + 1); otherwise a(n) = 2^(A005087(n)). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001
a(n) = 2^omega(n)/2 if n == +/-2 (mod 8), a(n) = 2^omega(n) if n== +/-1, +/-3, 4 (mod 8), a(n) = 2*2^omega(n) if n == 0 (mod 8), where omega(n) = A001221(n). - Benoit Cloitre, Feb 02 2003
For n >= 2 A046073(n) * a(n) = A000010(n) = phi(n). This gives a formula for A046073(n) using the one in A060594(n). - Sharon Sela (sharonsela(AT)hotmail.com), Mar 09 2002
Multiplicative with a(2) = 1; a(2^2) = 2; a(2^e) = 4 for e > 2; a(q^e) = 2 for q an odd prime. - Eric M. Schmidt, Jul 09 2013
a(n) = 2^A046072(n) for n>2, in accordance with the above formulas by Ahmed Fares. - Geoffrey Critzer, Jan 05 2015
a(n) = Sum_{k=1..n} floor(sqrt(1+n*(k-1)))-floor(sqrt(n*(k-1))). - Wesley Ivan Hurt, May 19 2021
From Amiram Eldar, Dec 30 2022: (Start)
Dirichlet g.f.: (1-1/2^s+2/4^s)*zeta(s)^2/zeta(2*s).
Sum_{k=1..n} a(k) ~ (6/Pi^2)*n*(log(n) + 2*gamma - 1 - log(2)/2 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
EXAMPLE
The four numbers 1^2, 3^2, 5^2 and 7^2 are congruent to 1 modulo 8, so a(8) = 4.
MAPLE
A060594 := proc(n)
option remember;
local a, b, c;
if type(n, even) then
a:= padic:-ordp(n, 2);
b:= 2^a;
c:= n/b;
min(b/2, 4) * procname(c)
else
2^nops(numtheory:-factorset(n))
fi
end proc:
map(A060594, [$1 .. 100]); # Robert Israel, Jan 05 2015
MATHEMATICA
a[n_] := Sum[ Boole[ Mod[k^2 , n] == 1], {k, 1, n}]; a[1] = 1; Table[a[n], {n, 1, 103}] (* Jean-François Alcover, Oct 21 2011 *)
a[n_] := Switch[Mod[n, 8], 2|6, 2^(PrimeNu[n]-1), 1|3|4|5|7, 2^PrimeNu[n], 0, 2^(PrimeNu[n]+1)]; Array[a, 103] (* Jean-François Alcover, Apr 09 2016 *)
PROG
(PARI) a(n)=sum(i=1, n, if((i^2-1)%n, 0, 1))
(PARI) a(n)=my(o=valuation(n, 2)); 2^(omega(n>>o)+max(min(o-1, 2), 0)) \\ Charles R Greathouse IV, Jun 06 2013
(PARI) a(n)=if(n<=2, 1, 2^#znstar(n)[3] ); \\ Joerg Arndt, Jan 06 2015
(Sage) print([len(Integers(n).square_roots_of_one()) for n in range(1, 100)]) # Ralf Stephan, Mar 30 2014
(Python)
from sympy import primefactors
def a007814(n): return 1 + bin(n - 1).count('1') - bin(n).count('1')
def a(n):
if n%2==0:
A=a007814(n)
b=2**A
c=n//b
return min(b//2, 4)*a(c)
else: return 2**len(primefactors(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 18 2017, after the Maple program
(Python)
from sympy import primefactors
def A060594(n): return (1<<len(primefactors(n>>(s:=(~n & n-1).bit_length()))))*(1 if n&1 else 1<<min(2, s-1)) # Chai Wah Wu, Oct 26 2022
CROSSREFS
Cf. A000010, A005087, A033948, A046073, A073103 (x^4 == 1 (mod n)).
Sequence in context: A083533 A076500 A344887 * A327813 A104361 A211449
KEYWORD
nonn,mult
AUTHOR
Jud McCranie, Apr 11 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 18:58 EDT 2024. Contains 371781 sequences. (Running on oeis4.)