The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059929 a(n) = Fibonacci(n)*Fibonacci(n+2). 21

%I #128 Sep 08 2022 08:45:03

%S 0,2,3,10,24,65,168,442,1155,3026,7920,20737,54288,142130,372099,

%T 974170,2550408,6677057,17480760,45765226,119814915,313679522,

%U 821223648,2149991425,5628750624,14736260450,38580030723,101003831722,264431464440,692290561601

%N a(n) = Fibonacci(n)*Fibonacci(n+2).

%C Expansion of golden ratio (1+sqrt(5))/2 as an infinite product: phi = Product_{i>=0} (1+1/(Fibonacci(2*i+1) * Fibonacci(2*i+3)-1)) * (1-1/(Fibonacci(2*i+2) * Fibonacci(2i+4)+1)). - _Thomas Baruchel_, Nov 11 2003

%C Each of these is one short of or one over the square of a Fibonacci number (A007598). This means that a rectangle sized F(n) by F(n + 2) units can't be converted into a square with sides of length F(n + 1) units unless one square unit of material is added or removed. - _Alonso del Arte_, May 03 2011

%C These are the integer parts of the numerators of the numbers with continued fraction representations [1, 2, 2, 2, ...], [1, 1, 2, 2, 2, ...], [1, 1, 1, 2, 2, 2, ...], etc., that is, sqrt(2), (2+sqrt(2))/2, 3-sqrt(2), (10+sqrt(2))/7, (24-sqrt(2))/14, etc. - _Geoffrey Caveney_, May 03 2014

%C a(n) appears also as the third component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-A248161(n), A079472(n+1), a(n), A121801(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given. - _Wolfdieter Lang_, Nov 01 2014

%C Numbers with a continued fraction expansion with the repeating sequence of length n [1, 1, ..., 1, 2], n-1 ones followed by a single two, for n > = 1, appear to be equal to (F(n) + sqrt(a(n)))/F(n+1), where F(n) = A000045(n). - _R. James Evans_, Nov 21 2018

%C The preceding conjecture is true. Proof: For n >= 1 let c(n) := confrac(repeat(1^{n-1}, 2)) where 1^{k} denotes 1 taken k times. This can be computed, e.g. from [Perron, third and fourth eq. on p. 62], as c(n) = (F(n) + sqrt(F(n+1)^2 - (-1)^n)) / F(n+1), which is the conjectured formula because F(n+1)^2 - (-1)^n = a(n). - _Wolfdieter Lang_, Jan 05 2019

%D Oskar Perron, Die Lehre von den Kettenbrüchen, Band I, 3. Auflage, B. G. Teubner, Stuttgart, 1954, pp. 61-61.

%H Muniru A Asiru, <a href="/A059929/b059929.txt">Table of n, a(n) for n = 0..2374</a> (first 501 terms from Harry J. Smith)

%H Tim Jones (producer), <a href="http://www.youtube.com/watch?v=TRNhnyGSVsA">Engineering Bits & Bytes: The Fibonacci Puzzle</a>, Wayne State University College of Engineering (2011).

%H Eric H. Kuo, <a href="https://arxiv.org/abs/math/0304090">Applications of graphical condensation for enumerating matchings and tilings</a>, arXiv:math/0304090 [math.CO], 2003.

%H Marc Renault, <a href="https://www.researchgate.net/publication/237102771_The_Fibonacci_Sequence_Under_Various_Moduli">Properties of the Fibonacci Sequence Under Various Moduli</a>, Master's Thesis, Wake Forest University, 1996.

%H Michel Waldschmidt, <a href="https://arxiv.org/abs/math/0312440">Open Diophantine problems</a>, arXiv:math/0312440 [math.NT], 2003-2004.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1).

%F a(n) = Fibonacci(n+1)^2 - (-1)^n = A007598(n+1) + A033999(n+1) = A000045(n+1)^2 - A033999(n).

%F G.f.: (2*x-x^2) / ((1+x)*(1-3*x+x^2)).

%F Sum_{n>=1} 1/a(n) = 1.

%F Sum_{n>=1} (-1)^n/a(n) = 2 - sqrt(5).

%F Sum_{n>=1} 1/a(2n-1) = 1/phi = (sqrt(5) - 1)/2. - _Franz Vrabec_, Sep 15 2005

%F Sum_{n>=1} 1/a(2n) = (3 - sqrt(5))/2. - _Franz Vrabec_, Nov 30 2009

%F a(n) = ((7+3*sqrt(5))/10)*((3+sqrt(5))/2)^(n-1) + ((7-3*sqrt(5))/10)*((3-sqrt(5))/2)^(n-1) + (3/5)*(-1)^(n-1). - _Tim Monahan_, Aug 09 2011

%F a(n) = (Lucas(n+1)^2 - Fibonacci(n+1)^2)/4. - _Vincenzo Librandi_, Aug 02 2014

%F a(n) = F(n-2)*F(n) + F(n-1)*F(n) + F(n-2)*F(n+1) + F(n-1)*F(n+1), where F=A000045, F(-2)=-1, F(-1)=1. - _Bruno Berselli_, Nov 03 2015

%F a(n) = A035513(1,n-1)*A035513(3,n-1)/2 = A035513(1,n-1)*A035513(4,n-1)/3. - _R. J. Mathar_, Sep 04 2016

%F a(n)+a(n+1) = A001519(n+2). - _R. J. Mathar_, Oct 19 2021

%F a(n) = 2*A001654(n) - A001654(n-1). - _R. J. Mathar_, Oct 19 2021

%F a(n)+a(n+3) = 2*F(2n+5) = A126358(n+2). - _Andrés Ventas_, Oct 25 2021

%F Sum_{n>=1} Fibonacci(n+1)/a(n) = 2. - _Amiram Eldar_, Jan 11 2022

%F a(n) = a(-2-n) and a(n) + a(n+3) = 2*(a(n+1) + a(n+2)) for all n in Z. - _Michael Somos_, Mar 18 2022

%e G.f. = 2*x + 3*x^2 + 10*x^3 + 24*x^4 + 65*x^5 + 168*x^6 + ... - _Michael Somos_, Mar 18 2022

%p with(combinat): a:=n->fibonacci(n)*fibonacci(n+2): seq(a(n), n=0..26); # _Zerinvary Lajos_, Oct 07 2007

%t Table[Fibonacci[n]*Fibonacci[n+2],{n,0,60}] (* _Vladimir Joseph Stephan Orlovsky_, Nov 17 2009 *)

%o (PARI) for (n=0, 500, write("b059929.txt", n, " ", fibonacci(n)*fibonacci(n + 2))) \\ _Harry J. Smith_, Jun 30 2009

%o (Magma) [Fibonacci(n)*Fibonacci(n+2): n in [0..30]]; // _Vincenzo Librandi_, Jul 02 2014

%o (Sage) [fibonacci(n)*fibonacci(n+2) for n in range(30)] # _G. C. Greubel_, Nov 21 2018

%o (GAP) a:=List([0..30],n->Fibonacci(n)*Fibonacci(n+2));; Print(a); # _Muniru A Asiru_, Jan 05 2019

%o (Python)

%o from sympy import fibonacci

%o [fibonacci(n)*fibonacci(n+2) for n in range(30)] # _Stefano Spezia_, Jan 05 2019

%Y Bisection of A070550.

%Y First differences of A059840.

%Y Cf. A000045, A001519, A001654, A007598, A033999, A035513, A079472, A121801, A126358, A147973, A248161.

%K nonn,easy

%O 0,2

%A _Henry Bottomley_, Feb 09 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 06:19 EDT 2024. Contains 372703 sequences. (Running on oeis4.)