The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059066 Card-matching numbers (Dinner-Diner matching numbers). 0

%I #20 Sep 26 2017 05:09:19

%S 1,2,3,0,1,10,24,27,16,12,0,1,56,216,378,435,324,189,54,27,0,1,346,

%T 1824,4536,7136,7947,6336,3936,1728,684,128,48,0,1,2252,15150,48600,

%U 99350,144150,156753,131000,87075,45000,19300,6000

%N Card-matching numbers (Dinner-Diner matching numbers).

%C This is a triangle of card matching numbers. A deck has 3 kinds of cards, n of each kind. The deck is shuffled and dealt in to 3 hands each with n cards. A match occurs for every card in the j-th hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..3n). The probability of exactly k matches is T(n,k)/((3n)!/n!^3).

%C Rows have lengths 1,4,7,10,...

%C Analogous to A008290. - _Zerinvary Lajos_, Jun 22 2005

%D F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.

%D R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.

%H D. Callan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Callan2/callan204.html">A combinatorial interpretation for an identity of Barrucand</a>, JIS 11 (2008) 08.3.4.

%H F. F. Knudsen and I. Skau, <a href="http://www.jstor.org/stable/2691467">On the Asymptotic Solution of a Card-Matching Problem</a>, Mathematics Magazine 69 (1996), 190-197.

%H Barbara H. Margolius, <a href="http://academic.csuohio.edu/bmargolius/homepage/dinner/dinner/cardentry.htm">Dinner-Diner Matching Probabilities</a>

%H B. H. Margolius, <a href="http://www.jstor.org/stable/3219303">The Dinner-Diner Matching Problem</a>, Mathematics Magazine, 76 (2003), 107-118.

%H S. G. Penrice, <a href="http://www.jstor.org/stable/2324927">Derangements, permanents and Christmas presents</a>, The American Mathematical Monthly 98(1991), 617-620.

%H <a href="/index/Ca#cardmatch">Index entries for sequences related to card matching</a>

%F G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards (3 in this case), k is the number of cards of each kind and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.

%e There are 27 ways of matching exactly 2 cards when there are 2 cards of each kind and 3 kinds of card so T(2,2)=27.

%p p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k);

%p for n from 0 to 7 do seq(coeff(f(t,3,n),t,m)/n!^3,m=0..3*n); od;

%t p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Coefficient[ f[t, 3, n], t, m]/n!^3, {n, 0, 5}, {m, 0, 3*n}] // Flatten (* _Jean-François Alcover_, Mar 04 2013, translated from Maple *)

%Y Cf. A008290, A059056-A059071.

%Y Cf. A008290.

%K nonn,tabf,nice

%O 0,2

%A Barbara Haas Margolius (margolius(AT)math.csuohio.edu)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 20:41 EDT 2024. Contains 372494 sequences. (Running on oeis4.)