login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058930 Number of 3-connected claw-free cubic graphs with 6n nodes. 3
0, 60, 19958400, 622452999168000, 258520167388849766400000, 675289572271869736778268672000000, 7393367369949286697176489031997849600000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
G.-B. Chae (chaegabb(AT)pilot.msu.edu), E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, preprint, 2001.
LINKS
G.-B. Chae, Home page
G.-B. Chae, Counting labeled claw-free cubic graphs by connectivity, Discrete Mathematics 308 (2008) 5136-5143.
G.-B. Chae, E. M. Palmer and R. W. Robinson, Computing the number of Claw-free Cubic Graphs with given Connectivity, Preprint, 2000. (Annotated scanned copy)
CROSSREFS
Cf. A058931.
Sequence in context: A003921 A003928 A065247 * A333523 A249909 A241601
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 12 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 4 04:21 EDT 2024. Contains 372226 sequences. (Running on oeis4.)