The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056857 Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n. 34

%I #101 Jun 18 2023 12:00:16

%S 1,1,1,2,2,1,5,6,3,1,15,20,12,4,1,52,75,50,20,5,1,203,312,225,100,30,

%T 6,1,877,1421,1092,525,175,42,7,1,4140,7016,5684,2912,1050,280,56,8,1,

%U 21147,37260,31572,17052,6552,1890,420,72,9,1,115975,211470,186300,105240,42630,13104,3150,600,90,10,1

%N Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n.

%C Number of successive equalities s_i = s_{i+1} in a set partition {s_1, ..., s_n} of {1, ..., n}, where s_i is the subset containing i, s(1) = 1 and s(i) <= 1 + max of previous s(j)'s.

%C T(n,c) = number of set partitions of the set {1,2,...,n} in which the size of the block containing the element 1 is k+1. Example: T(4,2)=3 because we have 123|4, 124|3 and 134|2. - _Emeric Deutsch_, Nov 10 2006

%C Let P be the lower-triangular Pascal-matrix (A007318), Then this is exp(P) / exp(1). - _Gottfried Helms_, Mar 30 2007. [This comment was erroneously attached to A011971, but really belongs here. - _N. J. A. Sloane_, May 02 2015]

%C From David Pasino (davepasino(AT)yahoo.com), Apr 15 2009: (Start)

%C As an infinite lower-triangular matrix (with offset 0 rather than 1, so the entries would be B(n - c)*binomial(n, c), B() a Bell number, rather than B(n - 1 - c)*binomial(n - 1, c) as below), this array is S P S^-1 where P is the Pascal matrix A007318, S is the Stirling2 matrix A048993, and S^-1 is the Stirling1 matrix A048994.

%C Also, S P S^-1 = (1/e)*exp(P). (End)

%C Exponential Riordan array [exp(exp(x)-1), x]. Equal to A007318*A124323. - _Paul Barry_, Apr 23 2009

%C Equal to A049020*A048994 as infinite lower triangular matrices. - _Philippe Deléham_, Nov 19 2011

%C Build a superset Q[n] of set partitions of {1,2,...,n} by distinguishing "some" (possibly none or all) of the singletons. Indexed from n >= 0, 0 <= k <= n, T(n,k) is the number of elements in Q[n] that have exactly k distinguished singletons. A singleton is a subset containing one element. T(3,1) = 6 because we have {{1}'{2,3}}, {{1,2}{3}'}, {{1,3}{2}'}, {{1}'{2}{3}}, {{1}{2}'{3}}, {{1}{2}{3}'}. - _Geoffrey Critzer_, Nov 10 2012

%C Let Bell(n,x) denote the n-th Bell polynomial, the n-th row polynomial of A048993. Then this is the triangle of connection constants when expressing the basis polynomials Bell(n,x + 1) in terms of the basis polynomials Bell(n,x). For example, row 3 is (5, 6, 3, 1) and 5 + 6*Bell(1,x) + 3*Bell(2,x) + Bell(3,x) = 5 + 6*x + 3*(x + x^2) + (x + 3*x^2 + x^3) = 5 + 10*x + 6*x^2 + x^3 = (x + 1) + 3*(x + 1)^2 + (x + 1)^3 = Bell(3,x + 1). - _Peter Bala_, Sep 17 2013

%D W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]

%H Alois P. Heinz, <a href="/A056857/b056857.txt">Rows n = 1..141, flattened</a>

%H H. W. Becker, <a href="http://www.jstor.org/stable/3029709">Rooks and rhymes</a>, Math. Mag., 22 (1948/49), 23-26. See Table III.

%H H. W. Becker, <a href="/A056857/a056857.pdf">Rooks and rhymes</a>, Math. Mag., 22 (1948/49), 23-26. [Annotated scanned copy]

%H Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Beyene/beyene13.html">Set Partitions and Other Bell Number Enumerated Objects</a>, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.

%H A. Hennessy and Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry6/barry161.html">Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials</a>, J. Int. Seq. 14 (2011) # 11.8.2, Corollary 17.

%H G. Hurst and A. Schultz, <a href="http://arxiv.org/abs/0906.0696">An elementary (number theory) proof of Touchard's congruence</a>, arXiv:0906.0696v2 [math.CO], 2009.

%H A. O. Munagi, <a href="http://dx.doi.org/10.1155/IJMMS.2005.451">Set partitions with successions and separations</a>, Intl. J. Math. Math. Sci. 2005 (2005) 451-463.

%H M. Spivey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Spivey/spivey25.html">A generalized recurrence for Bell numbers</a>, J. Int. Seq., 11 (2008), no. 2, Article 08.2.5

%H W. Yang, <a href="http://dx.doi.org/10.1016/0012-365X(96)00034-9">Bell numbers and k-trees</a>, Disc. Math. 156 (1996) 247-252.

%F T(n,c) = B(n-1-c)*binomial(n-1, c), where T(n,c) is the number of set partitions of {1, ..., n} that have c successive equalities and B() is a Bell number.

%F E.g.f.: exp(exp(x)+x*y-1). - _Vladeta Jovovic_, Feb 13 2003

%F G.f.: 1/(1-xy-x-x^2/(1-xy-2x-2x^2/(1-xy-3x-3x^2/(1-xy-4x-4x^2/(1-... (continued fraction). - _Paul Barry_, Apr 23 2009

%F Considered as triangle T(n,k), 0 <= k <= n: T(n,k) = A007318(n,k)*A000110(n-k) and Sum_{k=0..n} T(n,k)*x^k = A000296(n), A000110(n), A000110(n+1), A005493(n), A005494(n), A045379(n) for x = -1, 0, 1, 2, 3, 4 respectively. - _Philippe Deléham_, Dec 13 2009

%F Let R(n,x) denote the n-th row polynomial of the triangle. Then A000110(n+j) = Bell(n+j,1) = Sum_{k = 1..n} R(j,k)*Stirling2(n,k) (Spivey). - _Peter Bala_, Sep 17 2013

%e For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 successive equality, at i = 4.

%e Triangle begins:

%e 1;

%e 1, 1;

%e 2, 2, 1;

%e 5, 6, 3, 1;

%e 15, 20, 12, 4, 1;

%e 52, 75, 50, 20, 5, 1;

%e 203, 312, 225, 100, 30, 6, 1;

%e ...

%e From _Paul Barry_, Apr 23 2009: (Start)

%e Production matrix is

%e 1, 1;

%e 1, 1, 1;

%e 1, 2, 1, 1;

%e 1, 3, 3, 1, 1;

%e 1, 4, 6, 4, 1, 1;

%e 1, 5, 10, 10, 5, 1, 1;

%e 1, 6, 15, 20, 15, 6, 1, 1;

%e 1, 7, 21, 35, 35, 21, 7, 1, 1;

%e 1, 8, 28, 56, 70, 56, 28, 8, 1, 1; ... (End)

%p with(combinat): A056857:=(n,c)->binomial(n-1,c)*bell(n-1-c): for n from 1 to 11 do seq(A056857(n,c),c=0..n-1) od; # yields sequence in triangular form; _Emeric Deutsch_, Nov 10 2006

%p with(linalg): # Yields sequence in matrix form:

%p A056857_matrix := n -> subs(exp(1)=1, exponential(exponential(

%p matrix(n,n,[seq(seq(`if`(j=k+1,j,0),k=0..n-1),j=0..n-1)])))):

%p A056857_matrix(8); # _Peter Luschny_, Apr 18 2011

%t t[n_, k_] := BellB[n-1-k]*Binomial[n-1, k]; Flatten[ Table[t[n, k], {n, 1, 11}, {k, 0, n-1}]](* _Jean-François Alcover_, Apr 25 2012, after _Emeric Deutsch_ *)

%o (PARI)

%o B(n) = sum(k=0, n, stirling(n, k, 2));

%o tabl(nn)={for(n=1, nn, for(k=0, n - 1, print1(B(n - 1 - k) * binomial(n - 1, k),", ");); print(););};

%o tabl(12); \\ _Indranil Ghosh_, Mar 19 2017

%o (Python)

%o from sympy import bell, binomial

%o for n in range(1,12):

%o print([bell(n - 1 - k) * binomial(n - 1, k) for k in range(n)]) # _Indranil Ghosh_, Mar 19 2017

%o (SageMath)

%o def a(n): return (-1)^n / factorial(n)

%o @cached_function

%o def p(n, m):

%o R = PolynomialRing(QQ, "x")

%o if n == 0: return R(a(m))

%o return R((m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1))

%o for n in range(11): print(p(n, 0).list()) # _Peter Luschny_, Jun 18 2023

%Y Cf. Bell numbers A000110 (column c=0), A052889 (c=1), A105479 (c=2), A105480 (c=3).

%Y Cf. A056858-A056863. Essentially same as A056860, where the rows are read from right to left.

%Y Cf. also A007318, A005493, A270953.

%Y See A259691 for another version.

%Y T(2n+1,n+1) gives A124102.

%Y T(2n,n) gives A297926.

%K easy,nonn,tabl,nice

%O 1,4

%A Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

%E More terms from _David Wasserman_, Apr 22 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:26 EDT 2024. Contains 372600 sequences. (Running on oeis4.)