The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056242 Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n). 13

%I #66 Oct 14 2023 14:14:59

%S 1,1,2,1,5,4,1,9,16,8,1,14,41,44,16,1,20,85,146,112,32,1,27,155,377,

%T 456,272,64,1,35,259,833,1408,1312,640,128,1,44,406,1652,3649,4712,

%U 3568,1472,256,1,54,606,3024,8361,14002,14608,9312,3328,512,1,65,870,5202

%N Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n).

%C Generalized Riordan array (1/(1-x), x/(1-x) + x*dif(x/1-x),x)). - _Paul Barry_, Dec 26 2007

%C Reversal of A117317. - _Philippe Deléham_, Feb 11 2012

%C Essentially given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 11 2012

%C This sequence is given in the Strehl presentation with the o.g.f. (1-z)/[1-2(1+t)z+(1+t)z^2], with offset 0, along with a recursion relation, a combinatorial interpretation, and relations to Hermite and Laguerre polynomials. Note that the o.g.f. is related to that of A049310. - _Tom Copeland_, Jan 08 2017

%C From _Gus Wiseman_, Mar 06 2020: (Start)

%C T(n,k) is also the number of unimodal length-n sequences covering an initial interval of positive integers with maximum part k, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the sequences counted by row n = 4 are:

%C (1111) (1112) (1123) (1234)

%C (1121) (1132) (1243)

%C (1122) (1223) (1342)

%C (1211) (1231) (1432)

%C (1221) (1232) (2341)

%C (1222) (1233) (2431)

%C (2111) (1321) (3421)

%C (2211) (1322) (4321)

%C (2221) (1332)

%C (2231)

%C (2311)

%C (2321)

%C (2331)

%C (3211)

%C (3221)

%C (3321)

%C (End)

%C T(n,k) is the number of hexagonal directed-column convex polyominoes of area n with k columns (see Baril et al. at page 9). - _Stefano Spezia_, Oct 14 2023

%H Reinhard Zumkeller, <a href="/A056242/b056242.txt">Rows n = 1..125 of table, flattened</a>

%H Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, <a href="http://jl.baril.u-bourgogne.fr/hexbij.pdf">Bijections between Directed-Column Convex Polyominoes and Restricted Compositions</a>, September 29, 2023.

%H Tyler Clark and Tom Richmond, <a href="http://people.wku.edu/tom.richmond/Papers/CountConvexTopsFTOsets.pdf">The Number of Convex Topologies on a Finite Totally Ordered Set</a>, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.

%H F. K. Hwang and C. L. Mallows, <a href="http://dx.doi.org/10.1016/0097-3165(95)90097-7">Enumerating nested and consecutive partitions</a>, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.

%H Finn Bjarne Jost, <a href="https://arxiv.org/abs/2307.15825">Tautological Intersection Numbers and Order-Consecutive Partition Sequences</a>, arXiv:2307.15825 [math.CO], 2023. See p. 9.

%H V. Strehl, <a href="http://www.emis.de/journals/SLC/wpapers/s71vortrag/strehl.pdf">Combinatoire rétrospective et créative</a>, an on-line presentation, slide 36, SLC 71, Bertinoro,, September 18, 2013.

%H Volker Strehl, <a href="http://www.mat.univie.ac.at/~slc/wpapers/s76strehl.html">Lacunary Laguerre Series from a Combinatorial Perspective</a>, Séminaire Lotharingien de Combinatoire, B76c (2017).

%F The Hwang and Mallows reference gives explicit formulas.

%F T(n,k) = Sum_{j=0..k-1} (-1)^(k-1-j)*binomial(k-1, j)*binomial(n+2j-1, 2j) (1<=k<=n); this is formula (11) in the Huang and Mallows reference.

%F T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(1,1) = 1, T(2,1) = 1, T(2,2) = 2. - _Philippe Deléham_, Feb 11 2012

%F G.f.: -(-1+x)*x*y/(1-2*x-2*x*y+x^2*y+x^2). - _R. J. Mathar_, Aug 11 2015

%e Triangle begins:

%e 1;

%e 1, 2;

%e 1, 5, 4;

%e 1, 9, 16, 8;

%e 1, 14, 41, 44, 16;

%e 1, 20, 85, 146, 112, 32;

%e 1, 27, 155, 377, 456, 272, 64;

%e 1, 35, 259, 833, 1408, 1312, 640, 128;

%e 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256;

%e T(3,2)=5 because we have {1}{23}, {23}{1}, {12}{3}, {3]{12} and {2}{13}.

%e Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:

%e 1;

%e 1, 0;

%e 1, 2, 0;

%e 1, 5, 4, 0;

%e 1, 9, 16, 8, 0;

%e 1, 14, 41, 44, 16, 0;

%e 1, 20, 85, 146, 112, 32, 0;

%e 1, 27, 155, 377, 456, 272, 64, 0;

%p T:=proc(n,k) if k=1 then 1 elif k<=n then sum((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..12);

%t rows = 11; t[n_, k_] := (-1)^(k+1)*HypergeometricPFQ[{1-k, (n+1)/2, n/2}, {1/2, 1}, 1]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* _Jean-François Alcover_, Nov 17 2011 *)

%o (Haskell)

%o a056242 n k = a056242_tabl !! (n-1)!! (k-1)

%o a056242_row n = a056242_tabl !! (n-1)

%o a056242_tabl = [1] : [1,2] : f [1] [1,2] where

%o f us vs = ws : f vs ws where

%o ws = zipWith (-) (map (* 2) $ zipWith (+) ([0] ++ vs) (vs ++ [0]))

%o (zipWith (+) ([0] ++ us ++ [0]) (us ++ [0,0]))

%o -- _Reinhard Zumkeller_, May 08 2014

%Y Row sums are A007052.

%Y Column k = n - 1 is A053220.

%Y Ordered set-partitions are A000670.

%Y Cf. A001523, A049310, A072704, A084938, A097805, A117317, A227038, A328509, A332294, A332673, A332724, A332872.

%K nonn,tabl,easy,nice

%O 1,3

%A _Colin Mallows_, Aug 23 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 06:35 EDT 2024. Contains 372528 sequences. (Running on oeis4.)