The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054535 Square array giving Ramanujan sum T(n,k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n), read by antidiagonals upwards (n >= 1, k >= 1). 17

%I #130 Aug 22 2019 09:20:03

%S 1,-1,1,-1,1,1,0,-1,-1,1,-1,-2,2,1,1,1,-1,0,-1,-1,1,-1,-1,-1,2,-1,1,1,

%T 0,-1,-2,-1,0,2,-1,1,0,0,-1,-1,4,-2,-1,1,1,1,0,0,-1,1,-1,0,-1,-1,1,-1,

%U -1,-3,-4,-1,2,-1,2,2,1,1,0,-1,1,0,0,-1,1,-1,0,-1,-1,1,-1,2,-1,-1,0,0,6,-1,-1,-2,-1,1,1,1,-1

%N Square array giving Ramanujan sum T(n,k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n), read by antidiagonals upwards (n >= 1, k >= 1).

%C Replace the first column in A077049 with any k-th column in A177121 to get a new array. Then the matrix inverse of the new array will have the k-th column of A054535 (this array) as its first column. - _Mats Granvik_, May 03 2010

%C We have T(n, k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n) and

%C A054534(n, k) = c_k(n) = Sum_{m=1..k, (m,k)=1} exp(2 Pi i m n / k). That is, the current array is the transpose of array A054534. Dirichlet g.f.'s for these two arrays are given below by _R. J. Mathar_ and _Mats Granvik_. - _Petros Hadjicostas_, Jul 27 2019

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 160.

%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Oxford Science Publications, Clarendon Press, Oxford, 2003.

%D E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function, 2nd ed., 1986.

%H Robert Israel, <a href="/A054535/b054535.txt">Table of n, a(n) for n = 1..10011</a> (T(n,k) for n+k <= 142).

%H Tom M. Apostol, <a href="http://dx.doi.org/10.2140/pjm.1972.41.281">Arithmetical properties of generalized Ramanujan sums</a>, Pacific J. Math. 41 (1972), 281-293.

%H Eckford Cohen, <a href="https://dx.doi.org/10.1073/pnas.41.11.939">A class of arithmetic functions</a>, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944.

%H A. Elashvili, M. Jibladze, and D. Pataraia, <a href="http://dx.doi.org/10.1023/A:1018727630642">Combinatorics of necklaces and "Hermite reciprocity"</a>, J. Algebraic Combin. 10 (1999), 173-188.

%H M. L. Fredman, <a href="https://doi.org/10.1016/0097-3165(75)90008-4">A symmetry relationship for a class of partitions</a>, J. Combinatorial Theory Ser. A 18 (1975), 199-202.

%H Emiliano Gagliardo, <a href="http://www.bdim.eu/item?id=BUMI_1953_3_8_3_269_0">Le funzioni simmetriche semplici delle radici n-esime primitive dell'unità</a>, Bollettino dell'Unione Matematica Italiana Serie 3, 8(3) (1953), 269-273.

%H Otto Hölder, <a href="http://matwbn.icm.edu.pl/ksiazki/pmf/pmf43/pmf4312.pdf">Zur Theorie der Kreisteilungsgleichung K_m(x)=0</a>, Prace mat.-fiz. 43 (1936), 13-23.

%H Peter H. van der Kamp, <a href="http://emis.impa.br/EMIS/journals/INTEGERS/papers/n24/n24.Abstract.html">On the Fourier transform of the greatest common divisor</a>, Integers 13 (2013), #A24. [See Section 3 for historical remarks.]

%H J. C. Kluyver, <a href="https://www.dwc.knaw.nl/DL/publications/PU00013765.pdf">Some formulae concerning the integers less than n and prime to n</a>, in: KNAW, Proceedings, 9 I, 1906, Amsterdam, 1906, pp. 408-414; see p. 410.

%H C. A. Nicol, <a href="https://dx.doi.org/10.1073/pnas.39.9.963">On restricted partitions and a generalization of the Euler phi number and the Moebius function</a>, Proc. Natl. Acad. Sci. USA 39(9) (1953), 963-968.

%H C. A. Nicol and H. S. Vandiver, <a href="https://dx.doi.org/10.1073/pnas.40.9.825 ">A von Sterneck arithmetical function and restricted partitions with respect to a modulus</a>, Proc. Natl. Acad. Sci. USA 40(9) (1954), 825-835.

%H K. G. Ramanathan, <a href="https://www.ias.ac.in/article/fulltext/seca/020/01/0062-0069">Some applications of Ramanujan's trigonometrical sum C_m(n)</a>, Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69.

%H Srinivasa Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram21.pdf">On certain trigonometric sums and their applications in the theory of numbers</a>, Trans. Camb. Phil. Soc. 22 (1918), 259-276.

%H R. D. von Sterneck, <a href="https://play.google.com/books/reader?id=V1I-AQAAMAAJ&amp;hl=de&amp;printsec=frontcover&amp;pg=GBS.PA1567">Ein Analogon zur additiven Zahlentheorie</a>, Sitzungsber. Akad. Wiss. Sapientiae Math.-Naturwiss. Kl. 111 (1902), 1567-1601 (Abt. IIa). [It may not be universally accessible.]

%H R. D. von Sterneck, <a href="https://eudml.org/doc/144877">Über ein Analogon zur additiven Zahlentheorie</a>, Jahresbericht der Deutschen Mathematiker-Vereinigung 12 (1903), 110-113. [Summary of the 1902 paper.]

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Ramanujan%27s_sum">Ramanujan's sum</a>.

%H Wikipedia, <a href="https://de.wikipedia.org/wiki/Robert_Daublebsky_von_Sterneck_der_J%C3%BCngere">Robert Daublebsky von Sterneck der Jüngere</a>.

%H Aurel Wintner, <a href="https://www.jstor.org/stable/2371672">On a statistics of the Ramanujan sums</a>, Amer. J. Math., 64(1) (1942), 106-114.

%F T(n,k) = c_n(k) = phi(n) * Moebius(n/gcd(n, k))/phi(n/gcd(n, k)). - _Emeric Deutsch_, Dec 23 2004 [The r.h.s. of this formula is known as the von Sterneck function, and it was introduced by him around 1900. - _Petros Hadjicostas_, Jul 20 2019]

%F Dirichlet series: Sum_{n>=1} c_n(k)/n^s = sigma_{1-s}(k)/zeta(s) where sigma is the sum-of-divisors function. Sum_{n>=1} c_k(n)/n^s = zeta(s)*Sum_{d|k} mu(k/d)*d^(1-s). [Hardy & Wright, Titchmarsh] - _R. J. Mathar_, Apr 01 2012 [We have sigma_{1-s}(k) = Sum_{d|k} d^{1-s} = Sum_{d|k} (k/d)^{1-s} = sigma_{s-1}(k) / k^{s-1}. - _Petros Hadjicostas_, Jul 27 2019]

%F From _Mats Granvik_, Oct 10 2016: (Start)

%F For n >= 1 and k >= 1 let

%F A(n,k) := if n mod k = 0 then k^r, otherwise 0;

%F B(n,k) := if n mod k = 0 then k/n^s, otherwise 0.

%F Then the Ramanujan's sum matrix equals

%F inverse(A).transpose(B) evaluated at s=0 and r=0.

%F Equals inverse(A051731).transpose(A127093).

%F Dirichlet g.f.: Sum_{n>=1} Sum_{k>=1} T(n,k)/(n^r*k^s) = zeta(s)*zeta(s + r - 1)/zeta(r) as in Wikipedia. (End)

%F T(n,k) = c_n(k) = Sum_{s | gcd(n,k)} s * Moebius(n/s). - _Petros Hadjicostas_, Jul 27 2019

%F Lambert series and a consequence: Sum_{n >= 1} c_n(k) * z^n / (1 - z^n) = Sum_{s|k} s * z^s and -Sum_{n >= 1} (c_n(k) / n) * log(1 - z^n) = Sum_{s|k} z^s for |z| < 1 (using the principal value of the logarithm). - _Petros Hadjicostas_, Aug 15 2019

%e Square array T(n,k) = c_n(k) (with rows n >= 1 and columns k >= 1) starts as follows:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...

%e -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, -1, 2, -1, ...

%e 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, ...

%e -1, -1, -1, -1, 4, -1, -1, -1, -1, 4, -1, -1, -1, ...

%e 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, ...

%e -1, -1, -1, -1, -1, -1, 6, -1, -1, -1, -1, -1, -1, ...

%e 0, 0, 0, -4, 0, 0, 0, 4, 0, 0, 0, -4, 0, ...

%e ... [example edited by _Petros Hadjicostas_, Jul 27 2019]

%p with(numtheory): c:=(n,k)->phi(n)*mobius(n/gcd(n,k))/phi(n/gcd(n,k)): for n from 1 to 13 do seq(c(n+1-j,j),j=1..n) od; # gives the sequence in triangular form # _Emeric Deutsch_

%p # to get the example above

%p for n to 8 do

%p seq(c(n, k), k = 1 .. 13);

%p end do

%p # _Petros Hadjicostas_, Jul 27 2019

%t nmax = 14; t[n_, k_] := EulerPhi[n]*(MoebiusMu[n / GCD[n, k]] / EulerPhi[n / GCD[n, k]]); Flatten[ Table[t[n - k + 1, k], {n, 1, nmax}, {k, 1, n}]] (* _Jean-François Alcover_, Nov 10 2011, after _Emeric Deutsch_ *)

%t (* To get the example above in table format *)

%t TableForm[Table[t[n, k], {n, 1, 8}, {k, 1, 13}]]

%t (* _Petros Hadjicostas_, Jul 27 2019 *)

%Y Transpose of array in A054534. Cf. A054532, A054533, A282634.

%Y Cf. A086831=c_n(2) (2nd column), A085097=c_n(3) (3rd column), A085384=c_n(4) (4th column), A085639=c_n(5) (fifth column), A085906=c_n(6) (sixth column), A099837=c_3(n) (third row), A176742=c_4(n) (fourth row), A100051=c_6(n) (sixth row).

%K sign,tabl,nice

%O 1,12

%A _N. J. A. Sloane_, Apr 09 2000

%E Name edited by _Petros Hadjicostas_, Jul 27 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 03:50 EDT 2024. Contains 372497 sequences. (Running on oeis4.)