The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054493 A Pellian-related recursive sequence. 9

%I #60 Mar 21 2024 08:36:49

%S 1,7,36,175,841,4032,19321,92575,443556,2125207,10182481,48787200,

%T 233753521,1119980407,5366148516,25710762175,123187662361,

%U 590227549632,2827950085801,13549522879375,64919664311076,311048798676007,1490324329068961,7140572846668800

%N A Pellian-related recursive sequence.

%C This is the r=7 member in the r-family of sequences S_r(n+1) defined in A092184 where more information can be found.

%C Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 7, P2 = 10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Mar 25 2014

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

%H G. C. Greubel, <a href="/A054493/b054493.txt">Table of n, a(n) for n = 0..1000</a>

%H Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, <a href="https://www.emis.de/journals/INTEGERS/papers/p38/p38.Abstract.html">Polynomial sequences on quadratic curves</a>, Integers, Vol. 15, 2015, #A38.

%H I. Adler, <a href="http://www.fq.math.ca/Scanned/7-2/adler.pdf">Three Diophantine equations - Part II</a>, Fib. Quart., 7 (1969), 181-193.

%H Peter Bala, <a href="/A100047/a100047.pdf">Linear divisibility sequences and Chebyshev polynomials</a>

%H S. Barbero, U. Cerruti, and N. Murru, <a href="http://www.seminariomatematico.polito.it/rendiconti/78-1/BarberoCerrutiMurru.pdf">On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy</a>, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.

%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242.

%H Ioana-Claudia Lazăr, <a href="https://arxiv.org/abs/1904.06555">Lucas sequences in t-uniform simplicial complexes</a>, arXiv:1904.06555 [math.GR], 2019.

%H R. Stephan, <a href="http://www.ark.in-berlin.de/A001110.ps">Boring proof of a nonlinearity</a>

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="https://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-6,1)

%F a(n) = 5*a(n-1) - a(n-2) + 2, a(0)=1, a(1)=7.

%F A004254 = sqrt{21*(A054493)^2+28*(A054493)}/7. - _James A. Sellers_, May 10 2000

%F a(n) = (1/3)*(-2 + ((5+sqrt(21))/2)^n + ((5-sqrt(21))/2)^n). - _Ralf Stephan_, Apr 14 2004

%F G.f.: (1+x)/((1-x)*(1 - 5*x + x^2)) = (1+x)/(1 - 6*x + 6*x^2 - x^3). From the R. Stephan link.

%F a(n) = 6*a(n-1) - 6*a(n-2) + a(n-3), n>=2, a(-1):=0, a(0)=1, a(1)=7.

%F a(n) = (2*T(n, 5/2)-2)/3, with twice the Chebyshev polynomials of the first kind, 2*T(n, x=5/2)=A003501(n).

%F a(n) = b(n) + b(n-1), n>=1, with b(n)=A089817(n) the partial sums of S(n, 5)= U(n, 5/2)=A004254(n+1), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind.

%F From _Peter Bala_, Mar 25 2014: (Start)

%F The following formulas assume an offset of 1.

%F Let {u(n)} be the Lucas sequence in the quadratic integer ring Z[sqrt(7)] defined by the recurrence u(0) = 0, u(1) = 1 and u(n) = sqrt(7)*u(n-1) - u(n-2) for n >= 2. Then a(n) = u(n)^2.

%F Equivalently, a(n) = U(n-1,sqrt(7)/2)^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.

%F a(n) = 1/3*( ((sqrt(7) + sqrt(3))/2)^n - ((sqrt(7) - sqrt(3))/2)^n )^2.

%F a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -5/2; 1, 7/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.

%F See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

%F a(2*n - 1) = 7 * A004254(n)^2, a(2*n) = A030221(n)^2 for all n in Z. - _Michael Somos_, Jan 22 2017

%F a(n) = a(-2-n) for all n in Z. - _Michael Somos_, Jan 22 2017

%F 0 = 1 + a(n)*(-2 + a(n) - 5*a(n+1)) + a(n+1)*(-2 + a(n+1)) for all n in Z. - _Michael Somos_, Jan 22 2017

%e G.f. = 1 + 7*x + 36*x^2 + 175*x^3 + 841*x^4 + 4032*x^5 + 19321*x^6 + ...

%p A054493 := proc(n)

%p option remember;

%p if n <= 1 then

%p 6*n+1 ;

%p else

%p 5*procname(n-1)-procname(n-2)+2 ;

%p end if ;

%p end proc:

%p seq(A054493(n),n=0..10) ; # _R. J. Mathar_, Apr 16 2018

%t LinearRecurrence[{6,-6,1},{1,7,36},30] (* _Harvey P. Dale_, Apr 15 2015 *)

%t a[ n_] := ChebyshevU[n, Sqrt[7]/2]^2; (* _Michael Somos_, Jan 22 2017 *)

%o (PARI) {a(n) = simplify(polchebyshev(n, 2, quadgen(28)/2)^2)}; /* _Michael Somos_, Jan 22 2017 */

%Y Cf. A004254, A100047, A030221 (first differences).

%K easy,nonn

%O 0,2

%A _Barry E. Williams_, May 06 2000

%E Chebyshev comments from _Wolfdieter Lang_, Sep 10 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 09:04 EDT 2024. Contains 372530 sequences. (Running on oeis4.)