login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053632 Irregular triangle read by rows giving coefficients in expansion of Product_{k=1..n} (1 + x^k). 82
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,11
COMMENTS
Or, triangle T(n,k) read by rows, giving number of subsets of {1,2,...,n} with sum k. - Roger CUCULIERE (cuculier(AT)imaginet.fr), Nov 19 2000
Row n consists of A000124(n) terms. These are also the successive vectors (their nonzero elements) when one starts with the infinite vector (of zeros) with 1 inserted somewhere and then shifts it one step (right or left) and adds to the original, then shifts the result two steps and adds, three steps and adds, etc. - Antti Karttunen, Feb 13 2002
T(n,k) = number of partitions of k into distinct parts <= n. Triangle of distribution of Wilcoxon's signed rank statistic. - Mitch Harris, Mar 23 2006
T(n,k) = number of binary words of length n in which the sum of the positions of the 0's is k. Example: T(4,5)=2 because we have 0110 (sum of the positions of the 0's is 1+4=5) and 1001 (sum of the positions of the 0's is 2+3=5). - Emeric Deutsch, Jul 23 2006
A fair coin is flipped n times. You receive i dollars for a "success" on the i-th flip, 1<=i<=n. T(n,k)/2^n is the probability that you will receive exactly k dollars. Your expectation is n(n+1)/4 dollars. - Geoffrey Critzer, May 16 2010
From Gus Wiseman, Jan 02 2023: (Start)
With offset 1, also the number of integer compositions of n whose partial sums add up to k for k = n..n(n+1)/2. For example, row n = 6 counts the following compositions:
6 15 24 33 42 51 141 231 321 411 1311 2211 3111 12111 21111 111111
114 123 132 222 312 1131 1221 2121 11121 11211
213 1113 1122 1212 2112 1111
(End)
REFERENCES
A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.
LINKS
Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
FindStat - Combinatorial Statistic Finder, The major index of an integer composition
Alexander Rosa and Štefan Znám, A combinatorial problem in the theory of congruences. (Russian), Mat.-Fys. Casopis Sloven. Akad. Vied 15 1965 49-59. [Annotated scanned copy] See Table 1.
F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics Bulletin, v. 1, no. 6 (1945), pp. 80-83.
A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012.
A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv preprint arXiv:1302.6287 [physics.optics], 2013.
A. V. Yurkin, Symmetric triangle of Pascal and non-linear arithmetic parallelepiped, Book Manuscript, Research Gate 2015.
FORMULA
From Mitch Harris, Mar 23 2006: (Start)
T(n,k) = T(n-1, k) + T(n-1, k-n), T(0,0)=1, T(0,k) = 0, T(n,k) = 0 if k < 0 or k > (n+1 choose 2).
G.f.: (1+x)*(1+x^2)*...*(1+x^n). (End)
Sum_{k>=0} k * T(n,k) = A001788(n). - Alois P. Heinz, Feb 09 2017
max_{k>=0} T(n,k) = A025591(n). - Alois P. Heinz, Jan 20 2023
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1, 1;
1, 1, 1, 2, 1, 1, 1;
1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1;
1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1;
1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1;
...
Row n = 4 counts the following binary words, where k = sum of positions of zeros:
1111 0111 1011 0011 0101 0110 0001 0010 0100 1000 0000
1101 1110 1001 1010 1100
Row n = 5 counts the following strict partitions of k with all parts <= n (0 is the empty partition):
0 1 2 3 4 5 42 43 53 54 532 542 543 5431 5432 54321
21 31 32 51 52 431 432 541 5321 5421
41 321 421 521 531 4321
MAPLE
with(gfun, seriestolist); map(op, [seq(seriestolist(series(mul(1+(z^i), i=1..n), z, binomial(n+1, 2)+1)), n=0..10)]); # Antti Karttunen, Feb 13 2002
# second Maple program:
g:= proc(n) g(n):= `if`(n=0, 1, expand(g(n-1)*(1+x^n))) end:
T:= n-> seq(coeff(g(n), x, k), k=0..degree(g(n))):
seq(T(n), n=0..10); # Alois P. Heinz, Nov 19 2012
MATHEMATICA
Table[CoefficientList[ Series[Product[(1 + t^i), {i, 1, n}], {t, 0, 100}], t], {n, 0, 8}] // Grid (* Geoffrey Critzer, May 16 2010 *)
CROSSREFS
Rows reduced modulo 2 and interpreted as binary numbers: A068052, A068053. Rows converge towards A000009.
Row sums give A000079.
Cf. A285101 (multiplicative encoding of each row), A285103 (number of odd terms on row n), A285105 (number of even terms).
Row lengths are A000124.
A reciprocal version is (A033999, A219977, A291983, A291984, A291985, ...).
A negative version is A231599.
A version for partitions is A358194, reversed partitions A264034.
Sequence in context: A260971 A053258 A350738 * A242217 A306734 A124060
KEYWORD
tabf,nonn,easy,nice
AUTHOR
N. J. A. Sloane, Mar 22 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 16:45 EDT 2024. Contains 371989 sequences. (Running on oeis4.)