Recurrence relation for nonisomorphic connected k-multigraphs

These consist of either no edge between vertices or one of k types of distinguishable undirected edges. Harary and Palmer in *Graphical Enumeration* page 52 tell us the connectedness relation between the OGFs of a class of graphs \mathcal{G} and the subclass of connected graphs of this type \mathcal{C}.

$$
G(z)=\exp \sum_{\ell \geq 1} \frac{C\left(z^{\ell}\right)}{\ell}
$$

This is the unlabeled multiset operator from *Analytic Combinatorics* by Flajolet and Sedgewick. Differentiate to obtain

$$
\begin{aligned}
G^{\prime}(z)= & \exp \sum_{\ell \geq 1} \frac{C\left(z^{\ell}\right)}{\ell} \sum_{\ell \geq 1} C^{\prime}\left(z^{\ell}\right) z^{\ell-1} \\
& =G(z) \sum_{\ell \geq 1} C^{\prime}\left(z^{\ell}\right) z^{\ell-1} .
\end{aligned}
$$

Extracting coefficients we find

$$
\begin{gathered}
\quad\left[z^{n}\right] G^{\prime}(z)=(n+1) G_{n+1}=\sum_{q=0}^{n}\left[z^{n-q}\right] G(z)\left[z^{q}\right] \sum_{\ell \geq 1} C^{\prime}\left(z^{\ell}\right) z^{\ell-1} \\
=\sum_{q=0}^{n} G_{n-q}\left[z^{q+1}\right] \sum_{\ell \geq 1} C^{\prime}\left(z^{\ell}\right) z^{\ell}=\sum_{q=0}^{n} G_{n-q} \sum_{\ell \mid q+1}\left[z^{\ell \times(q+1) / \ell}\right] C^{\prime}\left(z^{\ell}\right) z^{\ell} \\
=\sum_{q=0}^{n} G_{n-q} \sum_{\ell \mid q+1}\left[z^{(q+1) / \ell}\right] C^{\prime}(z) z=\sum_{q=0}^{n} G_{n-q} \sum_{\ell \mid q+1} \frac{q+1}{\ell} C_{(q+1) / \ell} \\
=\sum_{q=0}^{n} G_{n-q} \sum_{p \mid q+1} p C_{p} .
\end{gathered}
$$

This gives a recurrence

$$
(n+1) G_{n+1}=\sum_{q=0}^{n-1} G_{n-q} \sum_{p \mid q+1} p C_{p}+\sum_{p \mid n+1 \wedge p<n+1} p C_{p}+(n+1) C_{n+1}
$$

or

$$
C_{n+1}=G_{n+1}-\frac{1}{n+1} \sum_{p \mid n+1 \wedge p<n+1} p C_{p}-\frac{1}{n+1} \sum_{q=0}^{n-1} G_{n-q} \sum_{p \mid q+1} p C_{p}
$$

We simplify to

$$
C_{n}=G_{n}-\frac{1}{n} \sum_{p \mid n \wedge p<n} p C_{p}-\frac{1}{n} \sum_{q=0}^{n-2} G_{n-1-q} \sum_{p \mid q+1} p C_{p}
$$

which is

$$
C_{n}=G_{n}-\frac{1}{n} \sum_{p \mid n \wedge p<n} p C_{p}-\frac{1}{n} \sum_{q=1}^{n-1} G_{n-q} \sum_{p \mid q} p C_{p}
$$

