A NOTE ON STEPHAN'S CONJECTURE 25

ELIZABETH WILMER AND OLIVER SCHIROKAUER

Recently Stephan [3] posted 117 conjectures based on an extensive analysis of the On-line Encyclopedia of Integer Sequences [1, 2]. Here we give an entirely elementary proof of a generalization of Conjecture 25.

As usual, we write $\phi(n)$ for the order of $(\mathbb{Z} / n \mathbb{Z})^{*}$, the multiplicative group of invertible elements modulo n.

Fix a prime $p>1$ and a positive integer $k>1$. For all non-negative integers n, let $C(n)$ be the number of distinct k-th powers, modulo $p^{k n}$.

Lemma 1. If $p^{k(n-1)} \mid(a-b)$, then $p^{k n} \mid\left((p a)^{k}-(p b)^{k}\right)$.
Proof. Observe that

$$
(p a)^{k}-(p b)^{k}=p^{k}(a-b)\left(a^{k-1}+a^{k-2} b+\cdots+b^{k-1}\right)
$$

and apply the hypothesis to the second factor.
Lemma 2. When k is relatively prime to both p and $p-1$,

$$
C(n)=(p-1) p^{k n-1}+C(n-1) \text { for all } n \geq 1
$$

Proof of Lemma. First note that

$$
\left|\left(\mathbb{Z} / p^{k n} \mathbb{Z}\right)^{*}\right|=\phi\left(p^{k n}\right)=(p-1) p^{k n-1} .
$$

Since k is relatively prime to both p and $p-1$, the homomorphism from the abelian group $\left(\mathbb{Z} / p^{k n} \mathbb{Z}\right)^{*}$ to itself given by raising each element to the k-th power is injective. Thus, the k-th powers of the invertible remainders are all distinct and contribute $\phi\left(p^{k n}\right)$ to the residue count.

What about the non-invertible remainders? Since p is prime, every noninvertible remainder is a multiple of p. By Lemma 1 ,

$$
p(0), p(1), p(2), \ldots, p\left(p^{k(n-1)}-1\right)
$$

will together generate all distinct non-invertible k-th powers, modulo $p^{k n}$. Since

$$
p^{k n} \mid\left((p a)^{k}-(p b)^{k}\right) \quad \text { iff } \quad p^{k(n-1)} \mid\left(a^{k}-b^{k}\right),
$$

together these values will contribute exactly $C(n-1)$ distinct k-th powers, modulo $p^{k n}$.

[^0]Proposition 3. When k is relatively prime to both p and $p-1$ and $n \geq 0$,

$$
C(n)=(p-1) p^{k-1}\left(\frac{p^{k n}-1}{p^{k}-1}\right)+1
$$

Proof. First note that $C(0)=1$. By Lemma 2 , when $n \geq 1$ we have

$$
\begin{aligned}
C(n) & =(p-1) p^{k n-1}+(p-1) p^{k(n-1)-1}+\cdots+(p-1) p^{k-1}+1 \\
& =(p-1) p^{k-1}\left(p^{k(n-1)}+\cdots+p^{k(0)}\right)+1 \\
& =(p-1) p^{k-1}\left(\frac{p^{k n}-1}{p^{k}-1}\right)+1
\end{aligned}
$$

(In the last step, we merely summed the geometric series.)
Corollary 4 (Conjecture 25). For all non-negative integers n, there are

$$
\frac{4\left(8^{n}\right)+3}{7}
$$

cubic residues modulo 8^{n}.
Proof. Set $p=2$ and $k=3$.

References

[1] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/ñjas/sequences/, 2004.
[2] Sloane, N. J. A. The on-line encyclopedia of integer sequences. Notices Amer. Math. Soc. 50 (2003), pp. 912-915.
[3] Stephan, Ralf. Prove or Disprove: 100 Conjectures from the OEIS. arXiv:math.CO/0409509

Department of Mathematics, Oberlin College, Oberlin, OH 44074
E-mail address: elizabeth.wilmer@oberlin.edu

[^0]: Date: October 15, 2004.

