The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034839 Triangular array formed by taking every other term of each row of Pascal's triangle. 37

%I #122 Dec 17 2023 10:34:03

%S 1,1,1,1,1,3,1,6,1,1,10,5,1,15,15,1,1,21,35,7,1,28,70,28,1,1,36,126,

%T 84,9,1,45,210,210,45,1,1,55,330,462,165,11,1,66,495,924,495,66,1,1,

%U 78,715,1716,1287,286,13

%N Triangular array formed by taking every other term of each row of Pascal's triangle.

%C Number of compositions of n having k parts greater than 1. Example: T(5,2)=5 because we have 3+2, 2+3, 2+2+1, 2+1+2 and 1+2+2. Number of binary words of length n-1 having k runs of consecutive 1's. Example: T(5,2)=5 because we have 1010, 1001, 0101, 1101 and 1011. - _Emeric Deutsch_, Mar 30 2005

%C From _Gary W. Adamson_, Oct 17 2008: (Start)

%C Received from _Herb Conn_:

%C Let T = tan x, then

%C tan x = T

%C tan 2x = 2T / (1 - T^2)

%C tan 3x = (3T - T^3) / (1 - 3T^2)

%C tan 4x = (4T - 4T^3) / (1 - 6T^2 + T^4)

%C tan 5x = (5T - 10T^3 + T^5) / (1 - 10T^2 + 5T^4)

%C tan 6x = (6T - 20T^3 + 6T^5) / (1 - 15T^2 + 15T^4 - T^6)

%C tan 7x = (7T - 35T^3 + 21T^5 - T^7) / (1 - 21T^2 + 35T^4 - 7T^6)

%C tan 8x = (8T - 56T^3 + 56T^5 - 8T^7) / (1 - 28T^2 + 70T^4 - 28T^6 + T^8)

%C tan 9x = (9T - 84T^3 + 126T^5 - 36T^7 + T^9) / (1 - 36 T^2 + 126T^4 - 84T^6 + 9T^8)

%C ... To get the next one in the series, (tan 10x), for the numerator add:

%C 9....84....126....36....1 previous numerator +

%C 1....36....126....84....9 previous denominator =

%C 10..120....252...120...10 = new numerator

%C For the denominator add:

%C ......9.....84...126...36...1 = previous numerator +

%C 1....36....126....84....9.... = previous denominator =

%C 1....45....210...210...45...1 = new denominator

%C ...where numerators = A034867, denominators = A034839

%C (End)

%C Triangle, with zeros omitted, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Dec 12 2011

%C The row (1,66,495,924,495,66,1) plays a role in expansions of powers of the Dedekind eta function. See the Chan link, p. 534. - _Tom Copeland_, Dec 12 2016

%C Binomial(n,2k) is also the number of permutations avoiding both 123 and 132 with k ascents, i.e., positions with w[i]<w[i+1]. - _Lara Pudwell_, Dec 19 2018

%C Coefficients in expansion of ((x-1)^n+(x+1)^n)/2 or ((x-i)^n+(x+i)^n)/2 with alternating sign. - _Eugeniy Sokol_, Sep 20 2020

%C Number of permutations of length n avoiding simultaneously the patterns 213 and 312 with the maximum number of non-overlapping descents equal k (equivalently, with the maximum number of non-overlapping ascents equal k). An ascent (resp., descent) in a permutation a(1)a(2)...a(n) is position i such that a(i) < a(i+1) (resp., a(i) > a(i+1)). - _Tian Han_, Nov 16 2023

%H G. C. Greubel, <a href="/A034839/b034839.txt">Table of n, a(n) for the first 101 rows, flattened</a>

%H M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, <a href="https://arxiv.org/abs/1812.07112">Distributions of Statistics over Pattern-Avoiding Permutations</a>, arXiv preprint arXiv:1812.07112 [math.CO], 2018.

%H H. Chan, S. Cooper, and P. Toh, <a href="http://dx.doi.org/10.1016/j.aim.2005.12.003">The 26th power of Dedekind's eta function</a> Advances in Mathematics, 207 (2006) 532-543.

%H Tom Copeland, <a href="https://tcjpn.wordpress.com/2020/07/15/juggling-zeros-in-the-matrix-example-ii/">Juggling Zeros in the Matrix: Example II</a>, 2020.

%H C. Corsani, D. Merlini, and R. Sprugnoli, <a href="http://dx.doi.org/10.1016/S0012-365X(97)00110-6">Left-inversion of combinatorial sums</a>, Discrete Mathematics, 180 (1998) 107-122.

%H Tian Han and Sergey Kitaev, <a href="https://arxiv.org/abs/2311.02974">Joint distributions of statistics over permutations avoiding two patterns of length 3</a>, arXiv:2311.02974 [math.CO], 2023.

%H S.-M. Ma, <a href="http://arxiv.org/abs/1205.0735">On some binomial coefficients related to the evaluation of tan(nx)</a>, arXiv preprint arXiv:1205.0735 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 13 2012

%H K. Oliver and H. Prodinger, The continued fraction expansion of Gauss' hypergeometric function and a new application to the tangent function, Transactions of the Royal Society of South Africa, Vol. 76 (2012), 151-154, <a href="http://dx.doi.org/10.1080/0035919X.2012.727363">[DOI]</a>; <a href="http://math.sun.ac.za/~hproding/pdffiles/Avery-contribution-July-2012.pdf">[PDF]</a>. - From _N. J. A. Sloane_, Jan 03 2013

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Tangent.html">Tangent</a> [From _Eric W. Weisstein_, Oct 18 2008]

%F E.g.f.: exp(x)*cosh(x*sqrt(y)). - _Vladeta Jovovic_, Mar 20 2005

%F From _Emeric Deutsch_, Mar 30 2005: (Start)

%F T(n, k) = binomial(n, 2*k), for n >= 0 and k = 0, 1, ..., floor(n/2).

%F G.f.: (1-z)/((1-z)^2 - t*z^2). (End)

%F O.g.f. for column no. k is (1/(1-x))*(x/(1-x))^(2*k), k >= 0 [from the g.f. given in the preceding formula]. - _Wolfdieter Lang_, Jan 18 2013

%F From _Peter Bala_, Jul 14 2015: (Start)

%F Stretched Riordan array ( 1/(1 - x ), x^2/(1 - x)^2 ) in the terminology of Corsani et al.

%F Denote this array by P. Then P * A007318 = A201701.

%F P * transpose(P) is A119326 read as a square array.

%F Let Q denote the array ( (-1)^k*binomial(2*n,k) )n,k>=0. Q is a signed version of A034870. Then Q*P = the identity matrix, that is, Q is a left-inverse array of P (see Corsani et al., p. 111).

%F P * A034870 = A080928. (End)

%F Even rows are A086645. An aerated version of this array is A099174 with each diagonal divided by the first element of the diagonal, the double factorials A001147. - _Tom Copeland_, Dec 12 2015

%e Triangluar array T(n, k) begins:

%e 1

%e 1

%e 1 1

%e 1 3

%e 1 6 1

%e 1 10 5

%e 1 15 15 1 ...

%e - _Philippe Deléham_, Dec 12 2011

%p for n from 0 to 13 do seq(binomial(n,2*k),k=0..floor(n/2)) od;# yields sequence in triangular form; # _Emeric Deutsch_, Mar 30 2005

%t u[1, x_] := 1; v[1, x_] := 1; z = 12;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]

%t v[n_, x_] := u[n - 1, x] + v[n - 1, x]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu] (* A034839 as a triangle *)

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv] (* A034867 as a triangle *)

%t (* _Clark Kimberling_, Feb 18 2012 *)

%t Table[Binomial[n, k], {n, 0, 13}, {k, 0, Floor[n, 2], 2}] // Flatten (* _Michael De Vlieger_, Dec 13 2016 *)

%o (PARI) for(n=0,15, for(k=0,floor(n/2), print1(binomial(n, 2*k), ", "))) \\ _G. C. Greubel_, Feb 23 2018

%o (Magma) /* As a triangle */ [[Binomial(n,2*k):k in [0..Floor(n/2)]] : n in [0..10]]; // _G. C. Greubel_, Feb 23 2018

%Y Cf. A007318, A034867, A034870, A080928, A119326, A201701.

%Y Cf. A008619 (row lengths), A086645.

%K nonn,easy,tabf

%O 0,6

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 12:10 EDT 2024. Contains 372552 sequences. (Running on oeis4.)