The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028246 Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows. 63

%I #353 Jan 14 2024 08:57:18

%S 1,1,1,1,3,2,1,7,12,6,1,15,50,60,24,1,31,180,390,360,120,1,63,602,

%T 2100,3360,2520,720,1,127,1932,10206,25200,31920,20160,5040,1,255,

%U 6050,46620,166824,317520,332640,181440,40320,1,511,18660,204630,1020600,2739240,4233600,3780000,1814400,362880

%N Triangular array a(n,k) = (1/k)*Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*i^n; n >= 1, 1 <= k <= n, read by rows.

%C Let M = n X n matrix with (i,j)-th entry a(n+1-j, n+1-i), e.g., if n = 3, M = [1 1 1; 3 1 0; 2 0 0]. Given a sequence s = [s(0)..s(n-1)], let b = [b(0)..b(n-1)] be its inverse binomial transform and let c = [c(0)..c(n-1)] = M^(-1)*transpose(b). Then s(k) = Sum_{i=0..n-1} b(i)*binomial(k,i) = Sum_{i=0..n-1} c(i)*k^i, k=0..n-1. - _Gary W. Adamson_, Nov 11 2001

%C From _Gary W. Adamson_, Aug 09 2008: (Start)

%C Julius Worpitzky's 1883 algorithm generates Bernoulli numbers.

%C By way of example [Wikipedia]:

%C B0 = 1;

%C B1 = 1/1 - 1/2;

%C B2 = 1/1 - 3/2 + 2/3;

%C B3 = 1/1 - 7/2 + 12/3 - 6/4;

%C B4 = 1/1 - 15/2 + 50/3 - 60/4 + 24/5;

%C B5 = 1/1 - 31/2 + 180/3 - 390/4 + 360/5 - 120/6;

%C B6 = 1/1 - 63/2 + 602/3 - 2100/4 + 3360/5 - 2520/6 + 720/7;

%C ...

%C Note that in this algorithm, odd n's for the Bernoulli numbers sum to 0, not 1, and the sum for B1 = 1/2 = (1/1 - 1/2). B3 = 0 = (1 - 7/2 + 13/3 - 6/4) = 0. The summation for B4 = -1/30. (End)

%C Pursuant to Worpitzky's algorithm and given M = A028246 as an infinite lower triangular matrix, M * [1/1, -1/2, 1/3, ...] (i.e., the Harmonic series with alternate signs) = the Bernoulli numbers starting [1/1, 1/2, 1/6, ...]. - _Gary W. Adamson_, Mar 22 2012

%C From _Tom Copeland_, Oct 23 2008: (Start)

%C G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1 x + (2 + t)*x^2/2! + (6 + 6t + t^2)*x^3/3! + ... gives row polynomials for A090582, the f-polynomials for the permutohedra (see A019538).

%C G(x,t-1) = 1 + 1*x + (1 + t)*x^2 / 2! + (1 + 4t + t^2)*x^3 / 3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra.

%C G[(t+1)x,-1/(t+1)] = 1 + (1+ t) x + (1 + 3t + 2 t^2) x^2 / 2! + ... gives row polynomials for the present triangle. (End)

%C The Worpitzky triangle seems to be an apt name for this triangle. - _Johannes W. Meijer_, Jun 18 2009

%C If Pascal's triangle is written as a lower triangular matrix and multiplied by A028246 written as an upper triangular matrix, the product is a matrix where the (i,j)-th term is (i+1)^j. For example,

%C 1,0,0,0 1,1,1, 1 1,1, 1, 1

%C 1,1,0,0 * 0,1,3, 7 = 1,2, 4, 8

%C 1,2,1,0 0,0,2,12 1,3, 9,27

%C 1,3,3,1 0,0,0, 6 1,4,16,64

%C So, numbering all three matrices' rows and columns starting at 0, the (i,j) term of the product is (i+1)^j. - Jack A. Cohen (ProfCohen(AT)comcast.net), Aug 03 2010

%C The Fi1 and Fi2 triangle sums are both given by sequence A000670. For the definition of these triangle sums see A180662. The mirror image of the Worpitzky triangle is A130850. - _Johannes W. Meijer_, Apr 20 2011

%C Let S_n(m) = 1^m + 2^m + ... + n^m. Then, for n >= 0, we have the following representation of S_n(m) as a linear combination of the binomial coefficients:

%C S_n(m) = Sum_{i=1..n+1} a(i+n*(n+1)/2)*C(m,i). E.g., S_2(m) = a(4)*C(m,1) + a(5)*C(m,2) + a(6)*C(m,3) = C(m,1) + 3*C(m,2) + 2*C(m,3). - _Vladimir Shevelev_, Dec 21 2011

%C Given the set X = [1..n] and 1 <= k <= n, then a(n,k) is the number of sets T of size k of subset S of X such that S is either empty or else contains 1 and another element of X and such that any two elemements of T are either comparable or disjoint. - _Michael Somos_, Apr 20 2013

%C Working with the row and column indexing starting at -1, a(n,k) gives the number of k-dimensional faces in the first barycentric subdivision of the standard n-dimensional simplex (apply Brenti and Welker, Lemma 2.1). For example, the barycentric subdivision of the 2-simplex (a triangle) has 1 empty face, 7 vertices, 12 edges and 6 triangular faces giving row 4 of this triangle as (1,7,12,6). Cf. A053440. - _Peter Bala_, Jul 14 2014

%C See A074909 and above g.f.s for associations among this array and the Bernoulli polynomials and their umbral compositional inverses. - _Tom Copeland_, Nov 14 2014

%C An e.g.f. G(x,t) = exp[P(.,t)x] = 1/t - 1/[t+(1-t)(1-e^(-xt^2))] = (1-t) * x + (-2t + 3t^2 - t^3) * x^2/2! + (6t^2 - 12t^3 + 7t^4 - t^5) * x^3/3! + ... for the shifted, reverse, signed polynomials with the first element nulled, is generated by the infinitesimal generator g(u,t)d/du = [(1-u*t)(1-(1+u)t)]d/du, i.e., exp[x * g(u,t)d/du] u eval. at u=0 generates the polynomials. See A019538 and the G. Rzadkowski link below for connections to the Bernoulli and Eulerian numbers, a Ricatti differential equation, and a soliton solution to the KdV equation. The inverse in x of this e.g.f. is Ginv(x,t) = (-1/t^2)*log{[1-t(1+x)]/[(1-t)(1-tx)]} = [1/(1-t)]x + [(2t-t^2)/(1-t)^2]x^2/2 + [(3t^2-3t^3+t^4)/(1-t)^3]x^3/3 + [(4t^3-6t^4+4t^5-t^6)/(1-t)^4]x^4/4 + ... . The numerators are signed, shifted A135278 (reversed A074909), and the rational functions are the columns of A074909. Also, dG(x,t)/dx = g(G(x,t),t) (cf. A145271). (Analytic G(x,t) added, and Ginv corrected and expanded on Dec 28 2015.) - _Tom Copeland_, Nov 21 2014

%C The operator R = x + (1 + t) + t e^{-D} / [1 + t(1-e^(-D))] = x + (1+t) + t - (t+t^2) D + (t+3t^2+2t^3) D^2/2! - ... contains an e.g.f. of the reverse row polynomials of the present triangle, i.e., A123125 * A007318 (with row and column offset 1 and 1). Umbrally, R^n 1 = q_n(x;t) = (q.(0;t)+x)^n, with q_m(0;t) = (t+1)^(m+1) - t^(m+1), the row polynomials of A074909, and D = d/dx. In other words, R generates the Appell polynomials associated with the base sequence A074909. For example, R 1 = q_1(x;t) = (q.(0;t)+x) = q_1(0;t) + q__0(0;t)x = (1+2t) + x, and R^2 1 = q_2(x;t) = (q.(0;t)+x)^2 = q_2(0:t) + 2q_1(0;t)x + q_0(0;t)x^2 = 1+3t+3t^2 + 2(1+2t)x + x^2. Evaluating the polynomials at x=0 regenerates the base sequence. With a simple sign change in R, R generates the Appell polynomials associated with A248727. - _Tom Copeland_, Jan 23 2015

%C For a natural refinement of this array, see A263634. - _Tom Copeland_, Nov 06 2015

%C From _Wolfdieter Lang_, Mar 13 2017: (Start)

%C The e.g.f. E(n, x) for {S(n, m)}_{m>=0} with S(n, m) = Sum_{k=1..m} k^n, n >= 0, (with undefined sum put to 0) is exp(x)*R(n+1, x) with the exponential row polynomials R(n, x) = Sum_{k=1..n} a(n, k)*x^k/k!. E.g., e.g.f. for n = 2, A000330: exp(x)*(1*x/1!+3*x^2/2!+2*x^3/3!).

%C The o.g.f. G(n, x) for {S(n, m)}_{m >=0} is then found by Laplace transform to be G(n, 1/p) = p*Sum_{k=1..n} a(n+1, k)/(p-1)^(2+k).

%C Hence G(n, x) = x/(1 - x)^(n+2)*Sum_{k=1..n} A008292(n,k)*x^(k-1).

%C E.g., n=2: G(2, 1/p) = p*(1/(p-1)^2 + 3/(p-1)^3 + 2/(p-1)^4) = p^2*(1+p)/(p-1)^4; hence G(2, x) = x*(1+x)/(1-x)^4.

%C This works also backwards: from the o.g.f. to the e.g.f. of {S(n, m)}_{m>=0}. (End)

%C a(n,k) is the number of k-tuples of pairwise disjoint and nonempty subsets of a set of size n. - _Dorian Guyot_, May 21 2019

%C From _Rajesh Kumar Mohapatra_, Mar 16 2020: (Start)

%C a(n-1,k) is the number of chains of length k in a partially ordered set formed from subsets of an n-element set ordered by inclusion such that the first term of the chains is either the empty set or an n-element set.

%C Also, a(n-1,k) is the number of distinct k-level rooted fuzzy subsets of an n-set ordered by set inclusion. (End)

%C The relations on p. 34 of Hasan (also p. 17 of Franco and Hasan) agree with the relation between A019538 and this entry given in the formula section. - _Tom Copeland_, May 14 2020

%C T(n,k) is the size of the Green's L-classes in the D-classes of rank (k-1) in the semigroup of partial transformations on an (n-1)-set. - _Geoffrey Critzer_, Jan 09 2023

%C T(n,k) is the number of strongly connected binary relations on [n] that have period k (A367948) and index 1. See Theorem 5.4.25(6) in Ki Hang Kim reference. - _Geoffrey Critzer_, Dec 07 2023

%D Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York and Basel (1982).

%H Seiichi Manyama, <a href="/A028246/b028246.txt">Table of n, a(n) for n = 1..10000</a>

%H V. S. Abramovich, <a href="http://kvant.mccme.ru/1973/05/summy_odinakovyh_stepenej_natu.htm">Power sums of natural numbers</a>, Kvant, no. 5 (1973), 22-25. (in Russian)

%H Peter Bala, <a href="/A131689/a131689.pdf">Deformations of the Hadamard product of power series</a>

%H Paul Barry, <a href="https://arxiv.org/abs/1803.06408">Three Études on a sequence transformation pipeline</a>, arXiv:1803.06408 [math.CO], 2018.

%H H. Belbachir, M. Rahmani, and B. Sury, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Rahmani/rahmani3.html">Sums Involving Moments of Reciprocals of Binomial Coefficients</a>, J. Int. Seq. 14 (2011) #11.6.6.

%H Hacene Belbachir and Mourad Rahmani, <a href="http://www.emis.de/journals/JIS/VOL15/Sury/sury42.html">Alternating Sums of the Reciprocals of Binomial Coefficients</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.2.8.

%H F. Brenti and V. Welker, <a href="http://arxiv.org/abs/math/0606356">f-vectors of barycentric subdivisions</a>, arXiv:math/0606356v1 [math.CO], Math. Z., 259(4), 849-865, 2008.

%H Patibandla Chanakya and Putla Harsha, <a href="https://arxiv.org/abs/1808.08699">Generalized Nested Summation of Powers of Natural Numbers</a>, arXiv:1808.08699 [math.NT], 2018. See Table 1.

%H Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/12/21/generators-inversion-and-matrix-binomial-and-integral-transforms/">Generators, Inversion, and Matrix, Binomial, and Integral Transforms</a>

%H Colin Defant, <a href="https://arxiv.org/abs/2004.11367">Troupes, Cumulants, and Stack-Sorting</a>, arXiv:2004.11367 [math.CO], 2020.

%H E. Delucchi, A. Pixton and L. Sabalka. <a href="http://arxiv.org/abs/1002.3201">Face vectors of subdivided simplicial complexes</a> arXiv:1002.3201v3 [math.CO], Discrete Mathematics, Volume 312, Issue 2, January 2012, Pages 248-257.

%H G. H. E Duchamp, N. Hoang-Nghia, and A. Tanasa, <a href="http://arxiv.org/abs/1207.6522">A word Hopf algebra based on the selection/quotient principle</a>, arXiv:1207.6522 [math.CO], 2012-2013; Séminaire Lotharingien de Combinatoire 68 (2013), Article B68c.

%H M. Dukes and C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.

%H Nick Early, <a href="https://arxiv.org/abs/1810.03246">Honeycomb tessellations and canonical bases for permutohedral blades</a>, arXiv:1810.03246 [math.CO], 2018.

%H S. Franco and A. Hasan, <a href="https://arxiv.org/abs/1904.07954">Graded Quivers, Generalized Dimer Models and Toric Geometry </a>, arXiv preprint arXiv:1904.07954 [hep-th], 2019

%H A. Hasan, <a href="https://academicworks.cuny.edu/gc_etds/3321/">Physics and Mathematics of Graded Quivers</a>, dissertation, Graduate Center, City University of New York, 2019.

%H H. Hasse, <a href="http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002372398">Ein Summierungsverfahren für die Riemannsche Zeta-Reihe</a>, Math. Z. 32, 458-464 (1930).

%H Guy Louchard, Werner Schachinger, and Mark Daniel Ward, <a href="https://arxiv.org/abs/2203.14773">The number of distinct adjacent pairs in geometrically distributed words: a probabilistic and combinatorial analysis</a>, arXiv:2203.14773 [math.PR], 2022. See p. 5.

%H Shi-Mei Ma, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i1p11">A family of two-variable derivative polynomials for tangent and secant</a>, El J. Combinat. 20(1) (2013), P11.

%H Richard J. Mathar, <a href="https://arxiv.org/abs/2308.14154">Integrals Associated with the Digamma Integral Representation</a>, arXiv:2308.14154 [math.GM], 2023. See p. 5.

%H Rajesh Kumar Mohapatra and Tzung-Pei Hong, <a href="https://doi.org/10.3390/math10071161">On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences</a>, Mathematics (2022) Vol. 10, No. 7, 1161.

%H A. Riskin and D. Beckwith, <a href="http://www.jstor.org/stable/2975362">Problem 10231</a>, Amer. Math. Monthly, 102 (1995), 175-176.

%H G. Rzadkowski, <a href="http://dx.doi.org/10.1142/S1402925110000635">Bernoulli numbers and solitons revisited</a>, Journal of Nonlinear Mathematical Physics, Volume 17, Issue 1, 2010.

%H John K. Sikora, <a href="https://arxiv.org/abs/1806.00887">On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles</a>, arXiv:1806.00887 [math.NT], 2018.

%H G. J. Simmons, <a href="http://www.jstor.org/stable/2689153">A combinatorial problem associated with a family of combination locks</a>, Math. Mag., 37 (1964), 127-132 (but there are errors). The triangle is on page 129.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Sam Vandervelde, <a href="https://doi.org/10.1080/00029890.2018.1408347">The Worpitzky Numbers Revisited</a>, Amer. Math. Monthly, 125:3 (2018), 198-206.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Bernoulli_number">Bernoulli number</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Barycentric_subdivision">Barycentric subdivision</a>

%H David C. Wood, <a href="http://www.cs.kent.ac.uk/pubs/1992/110/content.pdf">The computation of polylogarithms</a> (2014).

%F E.g.f.: -log(1-y*(exp(x)-1)). - _Vladeta Jovovic_, Sep 28 2003

%F a(n, k) = S2(n, k)*(k-1)! where S2(n, k) is a Stirling number of the second kind (cf. A008277). Also a(n,k) = T(n,k)/k, where T(n, k) = A019538.

%F Essentially same triangle as triangle [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is Deléham's operator defined in A084938, but the notation is different.

%F Sum of terms in n-th row = A000629(n) - _Gary W. Adamson_, May 30 2005

%F The row generating polynomials P(n, t) are given by P(1, t)=t, P(n+1, t) = t(t+1)(d/dt)P(n, t) for n >= 1 (see the Riskin and Beckwith reference). - _Emeric Deutsch_, Aug 09 2005

%F From _Gottfried Helms_, Jul 12 2006: (Start)

%F Delta-matrix as can be read from H. Hasse's proof of a connection between the zeta-function and Bernoulli numbers (see link below).

%F Let P = lower triangular matrix with entries P[row,col] = binomial(row,col).

%F Let J = unit matrix with alternating signs J[r,r]=(-1)^r.

%F Let N(m) = column matrix with N(m)(r) = (r+1)^m, N(1)--> natural numbers.

%F Let V = Vandermonde matrix with V[r,c] = (r+1)^c.

%F V is then also N(0)||N(1)||N(2)||N(3)... (indices r,c always beginning at 0).

%F Then Delta = P*J * V and B' = N(-1)' * Delta, where B is the column matrix of Bernoulli numbers and ' means transpose, or for the single k-th Bernoulli number B_k with the appropriate column of Delta,

%F B_k = N(-1)' * Delta[ *,k ] = N(-1)' * P*J * N(k).

%F Using a single column instead of V and assuming infinite dimension, H. Hasse showed that in x = N(-1) * P*J * N(s), where s can be any complex number and s*zeta(1-s) = x.

%F His theorem reads: s*zeta(1-s) = Sum_{n>=0..inf} (n+1)^-1*delta(n,s), where delta(n,s) = Sum_{j=0..n} (-1)^j * binomial(n,j) * (j+1)^s.

%F (End)

%F a(n,k) = k*a(n-1,k) + (k-1)*a(n-1,k-1) with a(n,1) = 1 and a(n,n) = (n-1)!. - _Johannes W. Meijer_, Jun 18 2009

%F Rephrasing the Meijer recurrence above: Let M be the (n+1)X(n+1) bidiagonal matrix with M(r,r) = M(r,r+1) = r, r >= 1, in the two diagonals and the rest zeros. The row a(n+1,.) of the triangle is row 1 of M^n. - _Gary W. Adamson_, Jun 24 2011

%F From _Tom Copeland_, Oct 11 2011: (Start)

%F With e.g.f.. A(x,t) = G[(t+1)x,-1/(t+1)]-1 (from 2008 comment) = -1 + 1/[1-(1+t)(1-e^(-x))] = (1+t)x + (1+3t+2t^2)x^2/2! + ..., the comp. inverse in x is

%F B(x,t)= -log(t/(1+t)+1/((1+t)(1+x))) = (1/(1+t))x - ((1+2t)/(1+t)^2)x^2/2 + ((1+3t+3t^2)/(1+t)^3)x^3/3 + .... The numerators are the row polynomials of A074909, and the rational functions are (omitting the initial constants) signed columns of the re-indexed Pascal triangle A007318.

%F Let h(x,t)= 1/(dB/dx) = (1+x)(1+t(1+x)), then the row polynomial P(n,t) = (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A=exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t), with P(1,t)=1+t. (Series added Dec 29 2015.)(End)

%F Let <n,k> denote the Eulerian numbers A173018(n,k), then T(n,k) = Sum_{j=0..n} <n,j>*binomial(n-j,n-k). - _Peter Luschny_, Jul 12 2013

%F Matrix product A007318 * A131689. The n-th row polynomial R(n,x) = Sum_{k >= 1} k^(n-1)*(x/(1 + x))^k, valid for x in the open interval (-1/2, inf). Cf A038719. R(n,-1/2) = (-1)^(n-1)*(2^n - 1)*Bernoulli(n)/n. - _Peter Bala_, Jul 14 2014

%F a(n,k) = A141618(n,k) / C(n,k-1). - _Tom Copeland_, Oct 25 2014

%F For the row polynomials, A028246(n,x) = A019538(n-1,x) * (1+x). - _Tom Copeland_, Dec 28 2015

%F A248727 = A007318*(reversed A028246) = A007318*A130850 = A007318*A123125*A007318 = A046802*A007318. - _Tom Copeland_, Nov 14 2016

%F n-th row polynomial R(n,x) = (1+x) o (1+x) o ... o (1+x) (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See example E11 in the Bala link. - _Peter Bala_, Jan 12 2018

%F From _Dorian Guyot_, May 21 2019: (Start)

%F Sum_{i=0..k} binomial(k,i) * a(n,i) = (k+1)^n.

%F Sum_{k=0..n} a(n,k) = 2*A000670(n).

%F (End)

%F With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry, A028246, are given by x^n * A_n(1 + 1/x;0). Other specializations of A_n(x;y) give A046802, A090582, A119879, A130850, and A248727. - _Tom Copeland_, Jan 24 2020

%F The row generating polynomials R(n,x) = Sum_{i=1..n} a(n,i) * x^i satisfy the recurrence equation R(n+1,x) = R(n,x) + Sum_{k=0..n-1} binomial(n-1,k) * R(k+1,x) * R(n-k,x) for n >= 1 with initial value R(1,x) = x. - _Werner Schulte_, Jun 17 2021

%e The triangle a(n, k) starts:

%e n\k 1 2 3 4 5 6 7 8 9

%e 1: 1

%e 2: 1 1

%e 3: 1 3 2

%e 4: 1 7 12 6

%e 5: 1 15 50 60 24

%e 6: 1 31 180 390 360 120

%e 7: 1 63 602 2100 3360 2520 720

%e 8: 1 127 1932 10206 25200 31920 20160 5040

%e 9: 1 255 6050 46620 166824 317520 332640 181440 40320

%e ... [Reformatted by _Wolfdieter Lang_, Mar 26 2015]

%e -----------------------------------------------------

%e Row 5 of triangle is {1,15,50,60,24}, which is {1,15,25,10,1} times {0!,1!,2!,3!,4!}.

%e From _Vladimir Shevelev_, Dec 22 2011: (Start)

%e Also, for power sums, we have

%e S_0(n) = C(n,1);

%e S_1(n) = C(n,1) + C(n,2);

%e S_2(n) = C(n,1) + 3*C(n,2) + 2*C(n,3);

%e S_3(n) = C(n,1) + 7*C(n,2) + 12*C(n,3) + 6*C(n,4);

%e S_4(n) = C(n,1) + 15*C(n,2) + 50*C(n,3) + 60*C(n,4) + 24*C(n,5); etc.

%e (End)

%e For X = [1,2,3], the sets T are {{}}, {{},{1,2}}, {{},{1,3}}, {{},{1,2,3}}, {{},{1,2},{1,2,3}}, {{},{1,3},{1,2,3}} and so a(3,1)=1, a(3,2)=3, a(3,3)=2. - _Michael Somos_, Apr 20 2013

%p a := (n,k) -> add((-1)^(k-i)*binomial(k,i)*i^n, i=0..k)/k;

%p seq(print(seq(a(n,k),k=1..n)),n=1..10);

%p T := (n,k) -> add(eulerian1(n,j)*binomial(n-j,n-k), j=0..n):

%p seq(print(seq(T(n,k),k=0..n)),n=0..9); # _Peter Luschny_, Jul 12 2013

%t a[n_, k_] = Sum[(-1)^(k-i) Binomial[k,i]*i^n, {i,0,k}]/k; Flatten[Table[a[n, k], {n, 10}, {k, n}]] (* _Jean-François Alcover_, May 02 2011 *)

%o (PARI) {T(n, k) = if( k<0 || k>n, 0, n! * polcoeff( (x / log(1 + x + x^2 * O(x^n) ))^(n+1), n-k))}; /* _Michael Somos_, Oct 02 2002 */

%o (PARI) {T(n,k) = stirling(n,k,2)*(k-1)!}; \\ _G. C. Greubel_, May 31 2019

%o (Sage)

%o def A163626_row(n) :

%o x = polygen(ZZ,'x')

%o A = []

%o for m in range(0, n, 1) :

%o A.append((-x)^m)

%o for j in range(m, 0, -1):

%o A[j - 1] = j * (A[j - 1] - A[j])

%o return list(A[0])

%o for i in (1..7) : print(A163626_row(i)) # _Peter Luschny_, Jan 25 2012

%o (Sage) [[stirling_number2(n,k)*factorial(k-1) for k in (1..n)] for n in (1..10)] # _G. C. Greubel_, May 30 2019

%o (Magma) [[StirlingSecond(n,k)*Factorial(k-1): k in [1..n]]: n in [1..10]]; // _G. C. Greubel_, May 30 2019

%o (GAP) Flat(List([1..10], n-> List([1..n], k-> Stirling2(n,k)* Factorial(k-1) ))) # _G. C. Greubel_, May 30 2019

%o (Python) # Assuming offset (n, k) = (0, 0).

%o def T(n, k):

%o if k > n: return 0

%o if k == 0: return 1

%o return k*T(n - 1, k - 1) + (k + 1)*T(n - 1, k)

%o for n in range(9):

%o print([T(n, k) for k in range(n + 1)]) # _Peter Luschny_, Apr 26 2022

%Y Dropping the column of 1's gives A053440.

%Y Without the k in the denominator (in the definition), we get A019538. See also the Stirling number triangle A008277.

%Y Cf. A087127, A087107, A087108, A087109, A087110, A087111, A084938 A075263.

%Y Row sums give A000629(n-1) for n >= 1.

%Y Cf. A027642, A002445. - _Gary W. Adamson_, Aug 09 2008

%Y Appears in A161739 (RSEG2 triangle), A161742 and A161743. - _Johannes W. Meijer_, Jun 18 2009

%Y Binomial transform is A038719. Cf. A131689.

%Y Cf. A007318, A008292, A046802, A074909, A090582, A123125, A130850, A135278, A141618, A145271, A163626, A248727, A263634.

%Y Cf. A119879.

%Y From _Rajesh Kumar Mohapatra_, Mar 29 2020: (Start)

%Y A000007(n-1) (column k=1), A000225(n-1) (column k=2), A028243(n-1) (column k=3), A028244(n-1) (column k=4), A028245(n-1) (column k=5), for n > 0.

%Y Diagonal gives A000142(n-1), for n >=1.

%Y Next-to-last diagonal gives A001710,

%Y Third, fourth, fifth, sixth, seventh external diagonal respectively give A005460, A005461, A005462, A005463, A005464. (End)

%K nonn,easy,nice,tabl

%O 1,5

%A _N. J. A. Sloane_, Doug McKenzie (mckfam4(AT)aol.com)

%E Definition corrected by Li Guo, Dec 16 2006

%E Typo in link corrected by _Johannes W. Meijer_, Oct 17 2009

%E Error in title corrected by _Johannes W. Meijer_, Sep 24 2010

%E Edited by _M. F. Hasler_, Oct 29 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 23:04 EDT 2024. Contains 372497 sequences. (Running on oeis4.)