login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022095 Fibonacci sequence beginning 1, 5. 34
1, 5, 6, 11, 17, 28, 45, 73, 118, 191, 309, 500, 809, 1309, 2118, 3427, 5545, 8972, 14517, 23489, 38006, 61495, 99501, 160996, 260497, 421493, 681990, 1103483, 1785473, 2888956, 4674429, 7563385, 12237814, 19801199, 32039013, 51840212, 83879225, 135719437 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(5;n-1-k,k), n>=1, with a(-1)=4. These are the sums of the SW-NE diagonals in P(5;n,k), the (5,1) Pascal triangle A093562. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also sums of the SW-NE diagonals in the (1,4)-Pascal triangle A095666.
Row sums of triangle A131776 starting (1, 5, 6, 11, 17, 28, ...). - Gary W. Adamson, Jul 14 2007
In general, for a Fibonacci sequence beginning with 1,b we have:
a(n) = (2^(-1-n)((1 - sqrt(5))^n*(1 + sqrt(5) - 2b)+(1 + sqrt(5))^n*(-1 + sqrt(5) + 2b)))/sqrt(5). - Herbert Kociemba, Dec 18 2011
Subsequence of primes: 5, 11, 17, 73, 191, 809, 421493, 1103483, ... . - R. J. Mathar, Aug 09 2012
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 9, 60, ... (differs from A001175). - R. J. Mathar, Aug 10 2012
LINKS
Tanya Khovanova, Recursive Sequences
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.
José L. Ramírez and Gustavo N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014).
Matty van Son, Uniqueness conjectures for extended Markov numbers, arXiv:1911.00746 [math.NT], 2019.
FORMULA
a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=5.
G.f.: (1+4*x)/(1-x-x^2).
a(n) = 4*Fibonacci(n) + Fibonacci(n+1), n>=1. - Zerinvary Lajos, Oct 05 2007, corrected by R. J. Mathar, Apr 07 2011
a(n-1) = ((1 + sqrt5)^n - (1 - sqrt5)^n)/(2^n*sqrt5)+ 2*((1 + sqrt5)^(n-1) - (1 - sqrt5)^(n-1))/(2^(n-2)*sqrt5). - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 4*Fibonacci(n+2) - 3*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = (L(n-2) + 8*L(n-1) + 4*L(n) + 2*L(n+1))/5 for the Lucas numbers L(n). - J. M. Bergot, Oct 22 2012
a(n) = ((2*sqrt(5) - 1)*(((1 + sqrt(5))/2)^(n+1)) + (2*sqrt(5) + 1)*(((1 - sqrt(5))/2)^(n+1)))/(sqrt(5)). - Bogart B. Strauss, Jul 19 2013
a(n) = Lucas(n-1) + Fibonacci(n+3) = Lucas(n+2) - Fibonacci(n-3). - Greg Dresden and Griffin Donaldson, Mar 03 2022
MAPLE
with(combinat): a:= n-> 4*fibonacci(n)+fibonacci(n+1): seq(a(n), n=0..32); # Zerinvary Lajos, Oct 05 2007
MATHEMATICA
f[n_] := (LucasL[n - 2] + 8*LucasL[n - 1] + 4*LucasL[n] + 2*LucasL[n + 1])/5; Array[f, 38, 0] (* or *)
LinearRecurrence[{1, 1}, {1, 5}, 38] (* Robert G. Wilson v, Oct 22 2012 *)
PROG
(PARI) a(n)=fibonacci(n-1)+5*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
(Magma) a0:=1; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
(GAP) List([0..40], n->4*Fibonacci(n)+Fibonacci(n+1)); # Muniru A Asiru, Mar 04 2018
CROSSREFS
a(n) = A101220(4, 0, n+1).
a(n) = A109754(4, n+1).
Sequence in context: A070373 A231000 A274283 * A042531 A042839 A041373
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 02:51 EDT 2024. Contains 371798 sequences. (Running on oeis4.)