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CONTINUED FRACTIONS f;ggj(;‘
CONTAINING B2
ARITHMETIC PROGRESSIONS

By D. H. LEHMER

THE remarkable regular continued fractions

(1) 2+ 3T deeoe.. = (e + Df(e — 1) = coth (3), AGER2S

(2) 1 +§+-5-+:,-+%+...=(e2 + 1)/(e? — 1) = coth (1),
and the general case
28 + : : : = (¢! + 1)/(e* — 1) = coth (2/2),

6S + 10S + 14S + - --

where t = 1/S, were discovered by Euler [1]. They are examples of elegant
continued fractions with elegant values. In looking for further examples one
can ask for the values of other continued fractions whose partial quotients are
in arithmetical progression, hoping that these values may also be elegant, or at
least simple, in some sense.

The first general task is that of evaluating the continued fraction whose
partial quotients form a general arithmetic progression.

1 1 1

(3) ao+;].'+;2j+‘a_3+...=[a0,a1,a2,a3,...],

where a, = an + b (a # 0).
We denote this fraction by F(a, b).
Its value is given by

THEOREM 1
F(a, b) = I,-1(2a™")[1,(2a7?),
where 1,(2) s the modified Bessel function [2],

=5 (2/2)v+2m
) o el B oy mzo Tm + DI( + m + 1)

and where o = b/a.
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18 CONTINUED FRACTIONS CONTAINING ARITHMETIC PROGRESSIONS

Proof: The reason why Bessel functions are involved in this problem is
because of the familiar recurrence, which follows easily from (4),

Ia(®) = 2 1(a) + L)

If we set
m=mn+a=mn+ bla
and
2 = 2a71,
we see that the function
Up = Un(a, @) = I, o(2a77)
enjoys the recurrence
Up-1 = (an + b)U, + Upy,y.
Starting with » = 0, we can write

U—'l - on + Ul == aoUo + Ul’
Uo - (a + b)Ul + U2 a1U1 + Uz,

and
U, = (2a + b)U; + Uz = a,U, + Us.
Eliminating U, U,, Us, ..., we find
U_,|Uy = ao + U,/U,

2 SO,

1 5 4 oo
al e sen +ak+ Uk/Uk+1

Now as kK — o0

Gy I, o(2a71)
User  dpaosr(lB™)

as we see from the expansion (4).
Hence the infinite continued fraction F(a, b) converges to

U—I/UO g Ia—l(za—l)/la(za_l)’

~ alk + « + 1) —> o0,

proving the theorem.
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When v is half an odd integer, /,(2) is an elementary function. In particular

I_ (%) = J% 2~ % cosh 2

and &
Ry o e 13
Iy (=) = A/—z %2 sinh 2.

Euler’s examples now are seen to be the cases F(4, 2) for (1), F(2, 1) for (2),
and F(4S, 2.5) for (3). In all three cases & = 4, which leads to the hyperbolic

cotangent I _, (2)/1y(2).

We can now evaluate the most natural continued fraction of our class,
F(1, 4= 11,2, 3,4.5,. ..1 = Li(2)/1,(2),

in terms of the ‘“imaginary” Bessel function. If one insists on the ‘“real”
Bessel function J,(2), one can have it at the price of using the barely irregular
continued fraction whose numerators are all equal to — 1. Thus

THEOREM 2. The irregular continued fraction

1 1 1
a+b—-—2a+b—-3a+b-— --.

where, as before, « = b/a.

B s

= Jo-1(2a77)[J(2a77),

This follows from Theorem 1 by 31mply replacing @ and b by ia and 7b.

Thus we have evaluated

€

(5) F(a,b) = b + .

a+b+2a+b+3a+b+---

I,_1(2a~Y)/I(2a"1) if e
{Ja_l(Za‘l)/Ja(Za‘l) if €

1

—-1.

Theorem 1 can be used to evaluate continued fractions having two interlaced
arithmetic progressions as their partial quotients. For example, we have

[1,12,5,28,9, 44, 13,60, 17, 76,...] = (3)(e + 1)/(e — 1) = } coth (3)
(6) (2,7,5,13,8,19,11, 25, 14,31, 17,...] = (V2/2)1,,(2VZ/3)/1,,2V2)3).

The general theorem here is

‘THEOREM 3. Let a, b, c, d be integers satisfying ([3])
(7) 2bc = d(2a + b)
Then the continued fraction

8) [a,¢c,a+b,c+da+ 2b,c+ 2d,a+ 3b,c + 3d,...]

where m = Vd[b, | = 1V bd, o = 2alb.

=m0, _1(2/1)[1,(2]1),

A (ORS
Al6S3SS
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Proof: Let k = am. Then for every nonnegative integer 7,
9 m(a + hb) = k + 2lh,
while
1 JZ 1 2bc
E(C + hd) = E(C + hd) = 3 V5d + hV bd

1d(2a + b)
= — + 2
2 +/bd

= dm(2a + b) + 2hl

= Y(ma + m(a + b)) + 2hl
= 3k + k + 2]) + 2hl
=k + (21 + 1)h,

where we have used (7) and (9).
Hence the continued fraction
(10) [ma, c/m, m(a + b), (¢ + d)[m),...] = [k, k + Lk+ 2Lk + 3---]
= F(l, k)
= I,_ (217 )/1,(2I71),

hl

where « = k[l = 2am|V'db = 2alb.

But this fraction is clearly m times the fraction (8).

This proves the theorem.

The fraction (10) to which we have applied Theorem 1 is, to be sure, not
necessarily a regular continued fraction since its partial quotients need not be
integers nor even rational. However, in the Proof of Theorem 1 we did not
use the hypothesis that @ and b were integers. Thus, in the fraction (6) we

have

so that

m=vV2 1=3V2 k=2v2

Theorem 1 can also be used to evaluate a class of continued fractions in
which the partial quotients in arithmetic progression are separated by con-
stant strings of arbitrary partial quotients, that is, fractions like

(11) [D, c1y €25« v0s C—1,8 + B, €15 €95 - o5 Cie—1y 28 & b;itysas b

Fractions of this type arise naturally, as Euler discovered. For example, the
regular continued fraction for e — 11is

e-1=[1,1,211,411611101114..]  AC(I]
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It is clear that we can restrict our attention to continued fractions of the form
(11), since this is equivalent to (in the sense of being a linear fractional func-
tion of) any other continued fraction which is obtained by prefixing any
finite set of arbitrary partial quotients.

THEOREM 4. The continued fraction (11) is equal to

1—13{—3' + ¢(aB, bB + B’ + B")},

where
[b, ¢5,Cqy < - oy Cpny] = A[B
10, 85, Cay o« i3 Cpg] = AB
165 05 Loy o v s bn-1] =AD"
and

¢ (S1)E-1,

Proof : This follows from the application of the so-called contraction opera-
tor [see Perron [4], p. 202, formula 9]. In fact the continued fraction (11) has
the value

The pe | 1aipt =l i
B (a+ b)B + B+ B"|  (2a + b)B + B’ + B"|

where we now have a continued fraction of type (5) after adding B’ to its first
term.
For example, consider

cos (1)

[1’ 1’ 3’ 1) 5) 1: 7) la 9! 1) 11, 1, .. .] = sin (1) T (1).

Here we have

b=1 a=2 k=2 bd=1 =1 B =1, e= =],

Hence the fraction is equal to

Jy() _ _ cos(l)
-1+ F_42,3)= -1+ J:’(]) ~ sin (1) — cos(l)‘

If we prefix this continued fraction by 1, we get the regular continued fraction
for

¢ (lc)os"(f)"s ) st (1),
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Another example whose derivation is left to the reader is Euler’s

R28)

e A SR L T v e AJ

Theorem 1 may be used to furnish facts about Bessel functions.
An example is

THEOREM 5. If ¢ is a constant,
lim I,_,(ce)/I,(ce) = exp (arcsinh (¢~1)) = ¢~}(1 + V1 + ¢3).

o=

Proof: Let b = 2/c and a = 2/(cx).
Then by Theorem 1
F(a,b) = [b,a + b,2a + b,...] = I,_,(ce)/I,(cc),

as o — 00, a — 0, and we get, in the limit,

e e B =
}Ln; e 70, 58) = .[6,56,0,...])
But F(0, b) is the positive root of the quadratic equation
b + : = X.
x

Therefore,
FO,5) =30+ V1 + b)) =c(1 + V1 + ).

This proves the theorem.

For those readers who do not feel comfortable about passing to the limit
termwise we give an alternate proof. For a more direct proof we need a formula
for I,(z) which is valid for large v and large 2. The power series (4), of course,
will not do. Instead we can use [5]

1 z2—-1 )"
12 I,(vx) = ez} 1 + 0(»~1)),
(12) () = == {2 e} (1 + 06~
where, for simplicity, we have let
g = Vi+ ¥

To apply this asymptotic expression to the proof of Theorem 5, we set

v Bapoex =6, (e V1i+ St =d
co ————s
V2=a—l, x2= z2= 1+x§.

Then
I, (vaxy) = Ia_l(ca).
I, (v,x,) I,(ca) |
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By (12) we have
Ivz(szz) (1’2_2'2-)%((22 — l)xleZQ—zl)a(zz =3 lezz)_I.
1,,(v1%,) V131 (21 — D, X9

As v; and v, = v; — 1 tend to infinity, the first factor tends to 1. The last
factor tends to ce~%/(d — 1).

Since

¢ ¢
= =c (1 + V1 + 2,
e A )
it suffices to show that the middle factor tends to ¢
To this effect we let ¢ = «~! and ignore terms in € in what follows. First

we find

x2=a‘f1=c1-1_e=c(l+e);

.next,
z2=\/1_+_§3=d(1+%2§-),
z2—1=(d—l)(1+—ﬁ€——),
did — 1)

2 — 2; = c¢/d.

Hence,
- 2 2
R =lelgiog 1+ 0)
= 1 + de.

It is now evident that the middle factor tends to

lim (1 + de)lle = €,

€0

The continued fraction (3) belongs to a much wider class of continued
fractions associated with the name of Hurwitz (see Perron [4], p. 126). The
convergents of (3) have interesting congruential properties (see [6] and [7]).
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