The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014085 Number of primes between n^2 and (n+1)^2. 114

%I #107 Sep 27 2023 13:42:33

%S 0,2,2,2,3,2,4,3,4,3,5,4,5,5,4,6,7,5,6,6,7,7,7,6,9,8,7,8,9,8,8,10,9,

%T 10,9,10,9,9,12,11,12,11,9,12,11,13,10,13,15,10,11,15,16,12,13,11,12,

%U 17,13,16,16,13,17,15,14,16,15,15,17,13,21,15,15,17,17,18,22,14,18,23,13

%N Number of primes between n^2 and (n+1)^2.

%C Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2.

%C a(n) is the number of occurrences of n in A000006. - _Philippe Deléham_, Dec 17 2003

%C See the additional references and links mentioned in A143227. - _Jonathan Sondow_, Aug 03 2008

%C Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - _Jonathan Vos Post_, Jul 30 2008 [Comment corrected by _Jonathan Sondow_, Aug 15 2008]

%C Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - _T. D. Noe_, Sep 05 2008

%C For n > 0: number of occurrences of n^2 in A145445. - _Reinhard Zumkeller_, Jul 25 2014

%D J. R. Goldman, The Queen of Mathematics, 1998, p. 82.

%H T. D. Noe, <a href="/A014085/b014085.txt">Table of n, a(n) for n = 0..10000</a>

%H Pierre Dusart, <a href="http://dx.doi.org/10.1090/S0025-5718-99-01037-6">The k-th prime is greater than k(ln k + ln ln k-1) for k>=2</a>, Mathematics of Computation 68: (1999), 411-415.

%H Tsutomu Hashimoto, <a href="http://arxiv.org/abs/0807.3690">On a certain relation between Legendre's conjecture and Bertrand's postulate</a>, arXiv:0807.3690 [math.GM], 2008.

%H M. Hassani, <a href="https://arxiv.org/abs/math/0607096">Counting primes in the interval (n^2, (n+1)^2)</a>, arXiv:math/0607096 [math.NT], 2006.

%H Edmund Landau, <a href="https://web.archive.org/web/20131227061130/http://www.mathunion.org/ICM/ICM1912.1/Main/icm1912.1.0093.0108.ocr.pdf">Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion.</a> Jahresbericht der Deutschen Mathematiker-Vereinigung (1912), Vol. 21, page 208-228.

%H Peter Munn, <a href="https://oeis.org/plot2a?name1=A005843&amp;name2=A014085&amp;tform1=log+base+10&amp;tform2=log+base+10&amp;shift=0&amp;radiop1=xy&amp;drawpoints=true">Logarithmic plot: number of primes between consecutive squares vs number of integers between the same squares</a>

%H Michael Penn, <a href="https://www.youtube.com/watch?v=j5qy-Or-1KM">Legendre's Conjecture is probably true, and here's why</a>, YouTube video, 2023.

%H Hugo Pfoertner, <a href="https://oeis.org/plot2a?name1=A349997&amp;name2=A349999&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=xy&amp;drawlines=true">Lower limit of the scatter band represented as a step function</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LegendresConjecture.html">Legendre's Conjecture</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Legendre%27s_conjecture">Legendre's conjecture</a>

%F a(n) = A000720((n+1)^2) - A000720(n^2). - _Jonathan Vos Post_, Jul 30 2008

%F a(n) = Sum_{k = n^2..(n+1)^2} A010051(k). - _Reinhard Zumkeller_, Mar 18 2012

%F Conjecture: for all n>1, abs(a(n)-(n/log(n))) < sqrt(n). - _Alain Rocchelli_, Sep 20 2023

%e a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317).

%t Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* _Lei Zhou_, Dec 01 2005 *)

%t Differences[PrimePi[Range[0,90]^2]] (* _Harvey P. Dale_, Nov 25 2015 *)

%o (PARI) a(n)=primepi((n+1)^2)-primepi(n^2) \\ _Charles R Greathouse IV_, Jun 15 2011

%o (Haskell)

%o a014085 n = sum $ map a010051 [n^2..(n+1)^2]

%o -- _Reinhard Zumkeller_, Mar 18 2012

%o (Python)

%o from sympy import primepi

%o def a(n): return primepi((n+1)**2) - primepi(n**2)

%o print([a(n) for n in range(81)]) # _Michael S. Branicky_, Jul 05 2021

%Y First differences of A038107.

%Y Cf. A000006, A053000, A053001, A007491, A077766, A077767, A108954, A000720, A060715, A104272, A143223, A143224, A143225, A143226, A143227.

%Y Cf. A010051, A061265, A221056, A000290, A145445.

%Y Counts of primes between consecutive higher powers: A060199, A061235, A062517.

%Y Cf. A333846, A349996, A349997, A349998, A349999.

%K nonn,nice

%O 0,2

%A _Jon Wild_, Jul 14 1997

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 12:32 EDT 2024. Contains 372519 sequences. (Running on oeis4.)