login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A011973 Irregular triangle of numbers read by rows: {binomial(n-k, k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials. 85

%I #314 Mar 29 2024 02:12:52

%S 1,1,1,1,1,2,1,3,1,1,4,3,1,5,6,1,1,6,10,4,1,7,15,10,1,1,8,21,20,5,1,9,

%T 28,35,15,1,1,10,36,56,35,6,1,11,45,84,70,21,1,1,12,55,120,126,56,7,1,

%U 13,66,165,210,126,28,1,1,14,78,220,330,252,84,8,1,15,91,286,495,462

%N Irregular triangle of numbers read by rows: {binomial(n-k, k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials.

%C T(n,k) is the number of subsets of {1,2,...,n-1} of size k and containing no consecutive integers. Example: T(6,2)=6 because the subsets of size 2 of {1,2,3,4,5} with no consecutive integers are {1,3},{1,4},{1,5},{2,4},{2,5} and {3,5}. Equivalently, T(n,k) is the number of k-matchings of the path graph P_n. - _Emeric Deutsch_, Dec 10 2003

%C T(n,k) = number of compositions of n+2 into k+1 parts, all >= 2. Example: T(6,2)=6 because we have (2,2,4),(2,4,2),(4,2,2),(2,3,3),(3,2,3) and (3,3,2). - _Emeric Deutsch_, Apr 09 2005

%C Given any recurrence sequence S(k) = x*a(k-1) + a(k-2), starting (1, x, x^2+1, ...); the (k+1)-th term of the series = f(x) in the k-th degree polynomial: (1, (x), (x^2 + 1), (x^3 + 2x), (x^4 + 3x^2 + 1), (x^5 + 4x^3 + 3x), (x^6 + 5x^4 + 6x^2 + 1), ... Example: let x = 2, then S(k) = 1, 2, 5, 12, 29, 70, 169, ... such that A000129(7) = 169 = f(x), x^6 + 5x^4 + 6x^2 + 1 = (64 + 80 + 24 + 1). - _Gary W. Adamson_, Apr 16 2008

%C Row k gives the nonzero coefficients of U(k,x/2) where U is the Chebyshev polynomial of the second kind. For example, row 6 is 1,5,6,1 and U(6,x/2) = x^6 - 5x^4 + 6x^2 - 1. - _David Callan_, Jul 22 2008

%C T(n,k) is the number of nodes at level k in the Fibonacci tree f(k-1). The Fibonacci trees f(k) of order k are defined as follows: 1. f(-1) and f(0) each consist of a single node. 2. For k >= 1, to the root of f(k-1), taken as the root of f(k), we attach with a rightmost edge the tree f(k-2). See the Iyer and Reddy references. These trees are not the same as the Fibonacci trees in A180566. Example: T(3,0)=1 and T(3,1)=2 because in f(2) = /\ we have 1 node at level 0 and 2 nodes at level 1. - _Emeric Deutsch_, Jun 21 2011

%C Triangle, with zeros omitted, given by (1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Dec 12 2011

%C Riordan array (1/(1-x),x^2/(1-x). - _Philippe Deléham_, Dec 12 2011

%C This sequence is the elements on the rising diagonals of the Pascal triangle, where the sum of the elements in each rising diagonal represents a Fibonacci number. - _Mohammad K. Azarian_, Mar 08 2012

%C If we set F(0;x) = 0, F(1;x) = 1, F(n+1;x) = x*F(n;x) + F(n-1;x), then we obtain the sequence of Vieta-Fibonacci polynomials discussed by _Gary W. Adamson_ above. We note that F(n;x) = (-i)^n * U(n;i*x/2), where U denotes the respective Chebyshev polynomial of the second kind (see David Callan's remark above). Let us fix a,b,f(0),f(1) in C, b is not the zero, and set f(n) = a*f(n-1) + b*f(n-2). Then we deduce the relation: f(n) = b^((n-1)/2) * F(n;a/sqrt(b))*f(1) + b^(n/2) * F(n-1;a/sqrt(b))*f(0), where for a given value of the complex root sqrt(b) we set b^(n/2) = (sqrt(b))^n. Moreover, if b=1 then we get f(n+k) + (-1)^k * f(n-k) = L(k;a)*f(n), for every k=0,1,...,n, and where L(0;a)=2, L(1;a)=a, L(n+1;a)=a*L(n;a) + L(n-1;a) are the Vieta-Lucas polynomials. Let us observe that L(n+2;a) = F(n+2;a) + F(n;a), L(m+n;a) = L(m;a)*F(n;a) + L(m-1;a)*F(n-1;a), which implies also L(n+1;a) = a*F(n;a) + 2*F(n-1;a). Further we have L(n;a) = 2*(-i)^n * T(n;i*x/2), where T(n;x) denotes the n-th Chebyshev polynomial of the first kind. For the proofs, other relations and facts - see Witula-Slota's papers. - _Roman Witula_, Oct 12 2012

%C The diagonal sums of this triangle are A000930. - _John Molokach_, Jul 04 2013

%C Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - _Tom Copeland_, Oct 11 2014

%C For a mirrored, shifted version showing the relation of these coefficients to the Pascal triangle, Fibonacci, and other number triangles, see A030528. See also A053122 for a relation to Cartan matrices. - _Tom Copeland_, Nov 04 2014

%C For a relation to a formulation for a universal Lie Weyl algebra for su(1,1), see page 16 of Durov et al. - _Tom Copeland_, Nov 29 2014

%C A reversed, signed and aerated version is given by A049310, related to Chebyshev polynomials. - _Tom Copeland_, Dec 06 2015

%C For n >= 3, the n-th row gives the coefficients of the independence polynomial of the (n-2)-path graph P_{n-2}. - _Eric W. Weisstein_, Apr 07 2017

%C For n >= 2, the n-th row gives the coefficients of the matching-generating polynomial of the (n-1)-path graph P_{n-1}. - _Eric W. Weisstein_, Apr 10 2017

%C Antidiagonals of the Pascal matrix A007318 read bottom to top. These are also the antidiagonals read from top to bottom of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper), which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Reverse is A102426. - _Tom Copeland_, Jul 02 2018

%C T(n,k) is the number of Markov equivalence classes with skeleton the path on n+1 nodes having exactly k immoralities. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - _Liam Solus_, Aug 23 2018

%C T(n, k) = number of compositions of n+1 into n+1-2*k odd parts. For example, T(6,2) = 6 because 7 = 5+1+1 = 3+3+1 = 3+1+3 = 1+1+5 = 1+3+3 = 1+1+5. - _Michael Somos_, Sep 19 2019

%C From _Gary W. Adamson_, Apr 25 2022: (Start)

%C Alternate rows can be parsed into those with odd integer coefficients to the right of the leftmost 1, and those with even integer coefficients to the right of the leftmost 1. The first set is shown in A054142 and are characteristic polynomials of submatrices of an infinite tridiagonal matrix (A332602) with all -1's in the super and subdiagonals and (1,2,2,2,...) as the main diagonal. For example, the characteristic equation of the 3 X 3 submatrix (1,-1,0; -1,2,-1; 0,-1,2) is x^3 - 5x^2 + 6x - 1. The roots are the Beraha constants B(7,1) = 3.24697...; B(7,2) = 1.55495...; and B(7,3) = 0.198062.... For n X n matrices of this form, the largest eigenvalue is B(2n+1, 1). The 3 X 3 matrix has an eigenvalue of 3.24697... = B(7,1).

%C Polynomials with even integer coefficients to the right of the leftmost 1 are in A053123 with roots being the even-indexed Beraha constants. The generating Cartan matrices are those with (2,2,2,...) as the main diagonal and -1's as the sub- and superdiagonals. The largest eigenvalue of n X n matrices of this form are B(2n+2,1). For example, the largest eigenvalue of (2,-1,0; -1,2,-1; 0,-1,2) is 3.414... = B(8,1) = a root to x^3 - 6x^2 + 10x - 4. (End)

%C T(n,k) is the number of edge covers of P_(n+2) with (n-k) edges. For example, T(6,2)=6 because among edges 1, 2, ..., 7 of P_8, we can eliminate any two non-consecutive edges among 2-6. These numbers can be found using the recurrence relation for the edge cover polynomial of P_n, which is E(P_n,x) = xE(P_(n-1),x)+xE(P_(n-2),x) and E(P_1,x)=0, E(P_2,x)=x (ref. Akbari and Oboudi). - _Feryal Alayont_, Jun 03 2022

%C T(n,k) is the number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using k dominoes and n-2*k squares. - _Michael A. Allen_, Dec 28 2022

%C T(n,k) is the number of positive integer sequences (s(1),s(2),...,s(n-2k)) such that s(i) < s(i+1), s(1) is odd, s(n-2k) <= n, and s(i) and s(i+1) have opposite parity (ref. Donnelly, Dunkum, and McCoy). Example: T(6,0)=1 corresponds to 123456; T(6,1)=5 corresponds to 1234, 1236, 1256, 1456, 3456; T(6,2)=6 corresponds to 12, 14, 16, 34, 36; and T(6,3)=1 corresponds to the empty sequence () with length 0. - _Molly W. Dunkum_, Jun 27 2023

%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 141ff.

%D C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.

%D I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. See p. 117.

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 182-183.

%H T. D. Noe, <a href="/A011973/b011973.txt">Rows n = 0..100 of triangle, flattened</a>

%H S. Akbari and M. R. Oboudi, <a href="https://www.sciencedirect.com/science/article/pii/S0195669812000996">On the edge cover polynomial of a graph</a>, European Journal of Combinatorics, 34 (2013), 297-321.

%H Feryal Alayont and Evan Henning, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Alayont/ala4.html">Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.

%H Michael A. Allen and Kenneth Edwards, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Allen/allen3.html">On Two Families of Generalizations of Pascal's Triangle</a>, J. Int. Seq. 25 (2022) Article 22.7.1.

%H M. Barnabei, F. Bonetti, S. Elizalde, and M. Silimbani, <a href="http://arxiv.org/abs/1401.3011">Descent sets on 321-avoiding involutions and hook decompositions of partitions</a>, arXiv preprint arXiv:1401.3011 [math.CO], 2014.

%H Paul Barry, <a href="https://arxiv.org/abs/2101.10218">On the duals of the Fibonacci and Catalan-Fibonacci polynomials and Motzkin paths</a>, arXiv:2101.10218 [math.CO], 2021.

%H J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, <a href="https://doi.org/10.37236/3478">Tiling a strip with triangles</a>, El. J. Combinat. 21 (1) (2014) P1.7.

%H A. Brousseau, <a href="http://www.fq.math.ca/fibonacci-tables.html">Fibonacci and Related Number Theoretic Tables</a>, Fibonacci Association, San Jose, CA, 1972, p. 91, 145.

%H Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Falcao/falcao5.html">Intrinsic Properties of a Non-Symmetric Number Triangle</a>, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.

%H Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/10/12/the-elliptic-lie-triad-kdv-and-ricattt-equations-infinigens-and-elliptic-genera/">Addendum to Elliptic Lie Triad</a>

%H P. Damianou, <a href="http://arxiv.org/abs/1110.6620">On the characteristic polynomials of Cartan matrices and Chebyshev polynomials</a>, arXiv preprint arXiv:1110.6620 [math.RT], 2014.

%H Robert G. Donnelly, Molly W. Dunkum, Murray L. Huber, and Lee Knupp, <a href="https://arxiv.org/abs/2012.14993">Sign-alternating Gibonacci polynomials</a>, arXiv:2012.14993 [math.CO], 2020.

%H Robert G. Donnelly, Molly W. Dunkum, Sasha V. Malone, and Alexandra Nance, <a href="https://arxiv.org/abs/2012.14991">Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras</a>, arXiv:2012.14991 [math.CO], 2020.

%H Robert G. Donnelly, Molly W. Dunkum, and Rachel McCoy, <a href="https://arxiv.org/abs/2303.05949">Olry Terquem's forgotten problem</a>, arXiv:2303.05949 [math.HO], 2023.

%H N. Durov, S. Meljanac, A. Samsarov, and Z. Skoda, <a href="https://arxiv.org/abs/math/0604096">A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra</a>, arXiv preprint arXiv:math/0604096 [math.RT], 2006.

%H Larry Ericksen, <a href="http://siauliaims.su.lt/index.php?option=com_content&amp;view=article&amp;id=44&amp;Itemid=9">Primality Testing and Prime Constellations</a>, Šiauliai Mathematical Seminar, Vol. 3 (11), 2008. See p. 72.

%H E. J. Farrell, <a href="http://dx.doi.org/10.1016/0095-8856(79)90070-4">An introduction to matching polynomials</a>, J. Comb. Theory B 27 (1) (1979) 75-86, Table 1.

%H J. L. Gross, T. Mansour, T. W. Tucker, and D. G. L. Wang, <a href="http://arxiv.org/abs/1501.06107">Root geometry of polynomial sequences I: Type (0, 1)</a>, arXiv preprint arXiv:1501.06107 [math.CO], 2015.

%H A. Holme, <a href="http://dx.doi.org/10.1016/S0012-365X(01)00154-6">A combinatorial proof of the duality defect conjecture in codimension 2</a>, Discrete Math., 241 (2001), 363-378; see p. 375.

%H K. Viswanathan Iyer and K. R. Udaya Kumar Reddy, <a href="http://arxiv.org/abs/0910.4432">Wiener index of binomial trees and Fibonacci trees</a>, arXiv:0910.4432 [cs.DM], 2009.

%H Peter Kagey, <a href="https://arxiv.org/abs/2210.17021">Ranking and Unranking Restricted Permutations</a>, arXiv:2210.17021 [math.CO], 2022.

%H I. Kaplansky and J. Riordan, <a href="/A000166/a000166_1.pdf">The problème des ménages</a>, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]

%H Franklin H.J. Kenter, and Jephian C.-H. Lin, <a href="https://arxiv.org/abs/1709.08740">On the error of a priori sampling: zero forcing sets and propagation time</a>, arXiv:1709.08740 [math.CO], 2017.

%H Jong Hyun Kim, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Kim/kim18.html">Hadamard products and tilings</a>, JIS 12 (2009) 09.7.4.

%H Clark Kimberling, <a href="https://www.fq.math.ca/Scanned/40-4/kimberling.pdf">Path-counting and Fibonacci numbers</a>, Fib. Quart. 40 (4) (2002) 328-338, Example 1A.

%H H. Li and T. MacHenry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/MacHenry/machenry7.html">Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences</a>, J. Int. Seq. 16 (2013) #13.3.5, example 41.

%H C.-K. Lim and K. S. Lam, <a href="http://dx.doi.org/10.1016/0012-365X(94)00093-X">The characteristic polynomial of ladder graphs and an annihilating uniqueness theorem</a>, Discr. Math., 151 (1996), 161-167.

%H Paweł Lorek and Piotr Markowski, <a href="https://arxiv.org/abs/1812.00687">Conditional gambler's ruin problem with arbitrary winning and losing probabilities with applications</a>, arXiv:1812.00687 [math.PR], 2018.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1609.03964">Tiling n x m rectangles with 1 x 1 and s x s squares</a>, arXiv:1609.03964 [math.CO], 2016, Section 4.1.

%H D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344 (Table 3).

%H P. Olver, <a href="http://www.math.umn.edu/~olver/di_/contact.pdf">The canonical contact form</a>.

%H A. Radhakrishnan, L. Solus, and C. Uhler, <a href="https://arxiv.org/abs/1706.06091">Counting Markov equivalence classes for DAG models on trees</a>, Discrete Applied Mathematics 244 (2018): 170-185.

%H Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, <a href="https://orbi.uliege.be/bitstream/2268/302524/1/isit2023.pdf">Gapped Binomial Complexities in Sequences</a>, Univ. Liège (Belgium 2023).

%H Fernando Szechtman, <a href="https://arxiv.org/abs/2107.02696">Closed formulae for certain Fermat-Pell equations</a>, arXiv:2107.02696 [math.NT], 2021. See Table p. 4.

%H Dennis Walsh, <a href="http://frank.mtsu.edu/~dwalsh/NOCONSC3.pdf">Notes on subsets of {1,2,...,n} that contain no consecutive integers</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependencePolynomial.html">Independence Polynomial</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching-GeneratingPolynomial.html">Matching-Generating Polynomial</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PathGraph.html">Path Graph</a>

%H H. S. Wilf, <a href="http://www.math.upenn.edu/~wilf/DownldGF.html">Generatingfunctionology</a>, 2nd edn., Academic Press, NY, 1994, p. 26, ex. 12.

%H R. Witula and D. Slota, <a href="http://www.emis.de/journals/INTEGERS/papers/h8/h8.Abstract.html">Conjugate sequences in a Fibonacci-Lucas sense and some identities for sums of powers of their elements</a>, Integers: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A08.

%H R. Witula and D. Slota, <a href="http://dx.doi.org/10.1016/j.jmaa.2005.12.020">On modified Chebyshev polynomials</a>, J. Math. Anal. Appl., 324 (2006), 321-343.

%H R. Yanco and A. Bagchi, <a href="/A007380/a007380_1.pdf">K-th order maximal independent sets in path and cycle graphs</a>, Unpublished manuscript, 1994. (Annotated scanned copy)

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F Let F(n, x) be the n-th Fibonacci polynomial in x; the g.f. for F(n, x) is Sum_{n>=0} F(n, x)*y^n = (1 + x*y)/(1 - y - x*y^2). - _Paul D. Hanna_

%F T(m, n) = 0 for n != 0 and m <= 1 T(0, 0) = T(1, 0) = 1 T(m, n) = T(m - 1, n) + T(m-2, n-1) for m >= 2 (i.e., like the recurrence for Pascal's triangle A007318, but going up one row as well as left one column for the second summand). E.g., T(7, 2) = 10 = T(6, 2) + T(5, 1) = 6 + 4. - _Rob Arthan_, Sep 22 2003

%F G.f. for k-th column: x^(2*k-1)/(1-x)^(k+1).

%F Identities for the Fibonacci polynomials F(n, x):

%F F(m+n+1, x) = F(m+1, x)*F(n+1, x) + x*F(m, x)F(n, x).

%F F(n, x)^2-F(n-1, x)*F(n+1, x) = (-x)^(n-1).

%F The degree of F(n, x) is floor((n-1)/2) and F(2p, x) = F(p, x) times a polynomial of equal degree which is 1 mod p.

%F From _Roger L. Bagula_, Feb 20 2009: (Start)

%F p(x,n) = Sum_{m=0..floor((n+1)/2)} binomial(n-m+1, m)*x^m;

%F p(x,n) = p(x, n - 1) + x*p(x, n - 2). (End)

%F T(n, k) = A102541(2*n+2, 2*k+1) + A102541(2*n+1, 2*k) - A102541(2*n+3, 2*k+1), n >= 0 and 0 <= k <= floor(n/2). - _Johannes W. Meijer_, Aug 26 2013

%F G.f.: 1/(1-x-y*x^2) = R(0)/2, where R(k) = 1 + 1/(1 - (2*k+1+ x*y)*x/((2*k+2+ x*y)*x + 1/R(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Nov 09 2013

%F O.g.f. G(x,t) = x/(1-x-tx^2) = x + x^2 + (1+t) x^3 + (1+2t) x^4 + ... has the inverse Ginv(x,t) = -[1+x-sqrt[(1+x)^2 + 4tx^2]]/(2tx) = x - x^2 + (1-t) x^3 + (-1+3t) x^4 + ..., an o.g.f. for the signed Motzkin polynomials of A055151, consistent with A134264 with h_0 = 1, h_1 = -1, h_2 = -t, and h_n = 0 otherwise. - _Tom Copeland_, Jan 21 2016

%F O.g.f. H(x,t) = x (1+tx)/ [1-x(1+tx)] = x + (1+t) x^2 + (1+2t) x^3 + ... = -L[Cinv(-tx)/t], where L(x) = x/(1+x) with inverse Linv(x) = x/(1-x) and Cinv(x) = x (1-x) is the inverse of C(x) = (1-sqrt(1-4x))/2, the o.g.f. of the shifted Catalan numbers A000108. Then Hinv(x,t) = -C[t Linv(-x)]/t = [-1 + sqrt(1+4tx/(1+x))]/2t = x - (1+t) x^2 + (1+2t+2t^2) x^3 - (1+3t+6t^2+5t^3) x^4 + ..., which is signed A098474, reverse of A124644. - _Tom Copeland_, Jan 25 2016

%F T(n, k) = GegenbauerC(k, (n+1)/2-k, 1). - _Peter Luschny_, May 10 2016

%e The first few Fibonacci polynomials (defined here by F(0,x) = 0, F(1,x) = 1; F(n+1, x) = F(n, x) + x*F(n-1, x)) are:

%e 0: 0

%e 1: 1

%e 2: 1

%e 3: 1 + x

%e 4: 1 + 2*x

%e 5: 1 + 3*x + x^2

%e 6: (1 + x)*(1 + 3*x)

%e 7: 1 + 5*x + 6*x^2 + x^3

%e 8: (1 + 2*x)*(1 + 4*x + 2*x^2)

%e 9: (1 + x)*(1 + 6*x + 9*x^2 + x^3)

%e 10: (1 + 3*x + x^2 )*(1 + 5*x + 5*x^2)

%e 11: 1 + 9*x + 28*x^2 + 35*x^3 + 15*x^4 + x^5

%e From _Roger L. Bagula_, Feb 20 2009: (Start)

%e 1

%e 1

%e 1 1

%e 1 2

%e 1 3 1

%e 1 4 3

%e 1 5 6 1

%e 1 6 10 4

%e 1 7 15 10 1

%e 1 8 21 20 5

%e 1 9 28 35 15 1

%e 1 10 36 56 35 6

%e 1 11 45 84 70 21 1

%e 1 12 55 120 126 56 7 (End)

%e For n=9 and k=4, T(9,4) = C(5,4) = 5 since there are exactly five size-4 subsets of {1,2,...,8} that contain no consecutive integers, namely, {1,3,5,7}, {1,3,5,8}, {1,3,6,8}, {1,4,6,8}, and {2,4,6,8}. - _Dennis P. Walsh_, Mar 31 2011

%e When the rows of the triangle are displayed as centered text, the falling diagonal sums are A005314. The first few terms are row1 = 1 = 1; row2 = 1+1 = 2; row3 = 2+1 = 3; row4 = 1+3+1 = 5; row5 = 1+3+4+1 = 9; row6 = 4+6+5+1 = 16; row7 = 1+10+10+6+1 = 28; row8 = 1+5+20+15+7+1 = 49; row9 = 6+15+35+21+8+1 = 86; row10 = 1+21+35+56+28+9+1 = 151. - _John Molokach_, Jul 08 2013

%e In the example, you can see that the n-th row of Pascal's triangle is given by T(n, 0), T(n+1, 1), ..., T(2n-1, n-1), T(2n, n). - _Daniel Forgues_, Jul 07 2018

%p a := proc(n) local k; [ seq(binomial(n-k,k),k=0..floor(n/2)) ]; end;

%p T := proc(n, k): if k<0 or k>floor(n/2) then return(0) fi: binomial(n-k, k) end: seq(seq(T(n,k), k=0..floor(n/2)), n=0..15); # _Johannes W. Meijer_, Aug 26 2013

%t (* first: sum method *) Table[CoefficientList[Sum[Binomial[n - m + 1, m]*x^m, {m, 0, Floor[(n + 1)/2]}], x], {n, 0, 12}] (* _Roger L. Bagula_, Feb 20 2009 *)

%t (* second: polynomial recursion method *) Clear[L, p, x, n, m]; L[x, 0] = 1; L[x, 1] = 1 + x; L[x_, n_] := L[x, n - 1] + x*L[x, n - 2]; Table[ExpandAll[L[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[L[x, n]], x], {n, 0, 12}]; Flatten[%] (* _Roger L. Bagula_, Feb 20 2009 *)

%t (* Center option shows falling diagonals are A224838 *) Column[Table[Binomial[n - m, m], {n, 0, 25}, {m, 0, Floor[n/2]}], Center] (* _John Molokach_, Jul 26 2013 *)

%t Table[ Select[ CoefficientList[ Fibonacci[n, x], x], Positive] // Reverse, {n, 1, 18} ] // Flatten (* _Jean-François Alcover_, Oct 21 2013 *)

%t CoefficientList[LinearRecurrence[{1, x}, {1 + x, 1 + 2 x}, {-1, 10}], x] // Flatten (* _Eric W. Weisstein_, Apr 07 2017 *)

%t CoefficientList[Table[x^((n - 1)/2) Fibonacci[n, 1/Sqrt[x]], {n, 15}], x] // Flatten (* _Eric W. Weisstein_, Apr 07 2017 *)

%o (PARI) {T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k))};

%o (Sage) # Prints the table; cf. A145574.

%o for n in (2..20): [Compositions(n, length=m, min_part=2).cardinality() for m in (1..n//2)] # _Peter Luschny_, Oct 18 2012

%o (Haskell)

%o a011973 n k = a011973_tabf !! n !! k

%o a011973_row n = a011973_tabf !! n

%o a011973_tabf = zipWith (zipWith a007318) a025581_tabl a055087_tabf

%o -- _Reinhard Zumkeller_, Jul 14 2015

%Y Row sums = A000045(n+1) (Fibonacci numbers). - _Michael Somos_, Apr 02 1999

%Y Cf. A000129, A054123, A052553, A000930, A030528, A053122.

%Y All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways.

%Y Cf. A007318, A025581, A055087.

%Y Cf. A000108, A049310, A055151, A098474, A124644, A134264.

%Y Cf. A054142, A053123, A332602.

%K tabf,easy,nonn,nice

%O 0,6

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 12:29 EDT 2024. Contains 372275 sequences. (Running on oeis4.)