The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009545 Expansion of e.g.f. sin(x)*exp(x). 51

%I #175 Feb 16 2024 15:21:33

%S 0,1,2,2,0,-4,-8,-8,0,16,32,32,0,-64,-128,-128,0,256,512,512,0,-1024,

%T -2048,-2048,0,4096,8192,8192,0,-16384,-32768,-32768,0,65536,131072,

%U 131072,0,-262144,-524288,-524288,0,1048576,2097152,2097152,0,-4194304,-8388608,-8388608,0,16777216,33554432

%N Expansion of e.g.f. sin(x)*exp(x).

%C Also first of the two associated sequences a(n) and b(n) built from a(0)=0 and b(0)=1 with the formulas a(n) = a(n-1) + b(n-1) and b(n) = -a(n-1) + b(n-1). The initial terms of the second sequence b(n) are 1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, ... The points Mn(a(n)+b(n)*I) of the complex plane are located on the spiral logarithmic rho = 2*(1/2)^(2*theta)/Pi) and on the straight lines drawn from the origin with slopes: infinity, 1/2, 0, -1/2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007

%C A000225: (1, 3, 7, 15, 31, ...) = 2^n - 1 = INVERT transform of A009545 starting (1, 2, 2, 0, -4, -8, ...). (Cf. comments in A144081). - _Gary W. Adamson_, Sep 10 2008

%C Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - _R. J. Mathar_, Aug 10 2012

%C The variant 0, 1, -2, 2, 0, -4, 8, -8, 0, 16, -32, 32, 0, -64, (with different signs) is the Lucas U(-2,2) sequence. - _R. J. Mathar_, Jan 08 2013

%C (1+i)^n = A146559(n) + a(n)*i where i = sqrt(-1). - _Philippe Deléham_, Feb 13 2013

%C This is the Lucas U(2,2) sequence. - _Raphie Frank_, Nov 28 2015

%C {A146559, A009545} are the difference analogs of {cos(x),sin(x)} (cf. [Shevelev] link). - _Vladimir Shevelev_, Jun 08 2017

%H N. J. A. Sloane, <a href="/A009545/b009545.txt">Table of n, a(n) for n = 0..2000</a>, Apr 09 2016 (first 100 terms from T. D. Noe)

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Barry/barry91.html">On Integer-Sequence-Based Constructions of Generalized Pascal Triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=2, q=-2.

%H Wolfdieter Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38 (2000) 408-419. Eqs. (38) and (45), lhs, m=2.

%H Vladimir Shevelev, <a href="https://arxiv.org/abs/1706.01454">Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n</a>, arXiv:1706.01454 [math.CO], 2017.

%H N. J. A. Sloane, <a href="/A066321/a066321.txt">Table of n, (I-1)^n for n = 0..100</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Lucas_sequence#Specific_names">Lucas sequence</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>

%H <a href="/index/Lu#Lucas">Index entries for Lucas sequences</a>

%F a(0)=0; a(1)=1; a(2)=2; a(3)=2; a(n) = -4*a(n-4), n>3. - Larry Reeves (larryr(AT)acm.org), Aug 24 2000

%F Imaginary part of (1+i)^n. - _Marc LeBrun_

%F G.f.: x/(1 - 2*x + 2*x^2).

%F E.g.f.: sin(x)*exp(x).

%F a(n) = S(n-1, sqrt(2))*(sqrt(2))^(n-1) with S(n, x)= U(n, x/2) Chebyshev's polynomials of the 2nd kind, Cf. A049310, S(-1, x) := 0.

%F a(n) = ((1+i)^n - (1-i)^n)/(2*i) = 2*a(n-1) - 2*a(n-2) (with a(0)=0 and a(1)=1). - _Henry Bottomley_, May 10 2001

%F a(n) = (1+i)^(n-2) + (1-i)^(n-2). - _Benoit Cloitre_, Oct 28 2002

%F a(n) = Sum_{k=0..n-1} (-1)^floor(k/2)*binomial(n-1, k). - _Benoit Cloitre_, Jan 31 2003

%F a(n) = 2^(n/2)sin(Pi*n/4). - _Paul Barry_, Sep 17 2003

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)*(-1)^k. - _Paul Barry_, Sep 20 2003

%F a(n+1) = Sum_{k=0..n} 2^k*A109466(n,k). - _Philippe Deléham_, Nov 13 2006

%F a(n) = 2*((1/2)^(2*theta(n)/Pi))*cos(theta(n)) where theta(4*p+1) = p*Pi + Pi/2, theta(4*p+2) = p*Pi + Pi/4, theta(4*p+3) = p*Pi - Pi/4, theta(4*p+4) = p*Pi - Pi/2, or a(0)=0, a(1)=1, a(2)=2, a(3)=2, and for n>3 a(n)=-4*a(n-4). Same formulas for the second sequence replacing cosines with sines. For example: a(0) = 0, b(0) = 1; a(1) = 0+1 = 1, b(1) = -0+1 = 1; a(2) = 1+1 = 2, b(2) = -1+1 = 0; a(3) = 2+0 = 2, b(3) = -2+0 = -2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, which implies the sequence is identical to its fourth differences. Binomial transform of 0, 1, 0, -1. - _Paul Curtz_, Dec 21 2007

%F Logarithm g.f. arctan(x/(1-x)) = Sum_{n>0} a(n)/n*x^n. - _Vladimir Kruchinin_, Aug 11 2010

%F a(n) = A046978(n) * A016116(n). - _Paul Curtz_, Apr 24 2011

%F E.g.f.: exp(x) * sin(x) = x + x^2/(G(0)-x); G(k) = 2k + 1 + x - x*(2k+1)/(4k+3+x+x^2*(4k+3)/( (2k+2)*(4k+5) - x^2 - x*(2k+2)*(4k+5)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 15 2011

%F a(n) = Im( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012

%F G.f.: x*U(0) where U(k) = 1 + x*(k+3) - x*(k+1)/U(k+1); (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Oct 10 2012

%F G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 25 2013

%F G.f.: x + x^2*W(0), where W(k) = 1 + 1/(1 - x*(k+1)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 28 2013

%F G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 2*x)/( x*(4*k+4 - 2*x) + 1/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Sep 06 2013

%F a(n) = (A^n - B^n)/(A - B), where A = 1 + i and B = 1 - i; A and B are solutions of x^2 - 2*x + 2 = 0. - _Raphie Frank_, Nov 28 2015

%F a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)) for n> = 2. - _Peter Luschny_, Dec 17 2015

%F a(k+m) = a(k)*A146559(m) + a(m)*A146559(k). - _Vladimir Shevelev_, Jun 08 2017

%p t1 := sum(n*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 0 to 50 do printf(`%d, `, coeff(F, x, i)) od: # _Zerinvary Lajos_, Mar 22 2009

%p G(x):=exp(x)*sin(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..50 ); # _Zerinvary Lajos_, Apr 05 2009

%p A009545 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)):

%p seq(simplify(A009545(n)), n=0..50); # _Peter Luschny_, Dec 17 2015

%t nn=104; Range[0,nn-1]! CoefficientList[Series[Sin[x]Exp[x], {x,0,nn}], x] (* _T. D. Noe_, May 26 2007 *)

%t Join[{a=0,b=1},Table[c=2*b-2*a;a=b;b=c,{n,100}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 17 2011 *)

%t f[n_] := (1 + I)^(n - 2) + (1 - I)^(n - 2); Array[f, 51, 0] (* _Robert G. Wilson v_, May 30 2011 *)

%t LinearRecurrence[{2,-2},{0,1},110] (* _Harvey P. Dale_, Oct 13 2011 *)

%o (Sage) [lucas_number1(n,2,2) for n in range(0, 51)] # _Zerinvary Lajos_, Apr 23 2009

%o (PARI) x='x+O('x^66); Vec(serlaplace(exp(x)*sin(x))) /* _Joerg Arndt_, Apr 24 2011 */

%o (PARI) x='x+O('x^100); concat(0, Vec(x/(1-2*x+2*x^2))) \\ _Altug Alkan_, Dec 04 2015

%o (Sage)

%o def A146559():

%o x, y = 0, -1

%o while True:

%o yield x

%o x, y = x - y, x + y

%o a = A146559(); [next(a) for i in range(40)] # _Peter Luschny_, Jul 11 2013

%o (Magma) I:=[0,1,2,2]; [n le 4 select I[n] else -4*Self(n-4): n in [1..60]]; // _Vincenzo Librandi_, Nov 29 2015

%o (Python)

%o def A009545(n): return ((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # _Chai Wah Wu_, Feb 16 2024

%Y Cf. A009116. For minor variants of this sequence see A108520, A084102, A099087.

%Y a(2*n) = A056594(n)*2^n, n >= 1, a(2*n+1) = A057077(n)*2^n.

%Y This is the next term in the sequence A015518, A002605, A000129, A000079, A001477.

%Y Cf. A000225, A144081. - _Gary W. Adamson_, Sep 10 2008

%Y Cf. A146559.

%K sign,easy,nice

%O 0,3

%A _R. H. Hardin_

%E Extended with signs by _Olivier Gérard_, Mar 15 1997

%E More terms from Larry Reeves (larryr(AT)acm.org), Aug 24 2000

%E Definition corrected by _Joerg Arndt_, Apr 24 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 10:29 EDT 2024. Contains 372540 sequences. (Running on oeis4.)