The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008282 Triangle of Euler-Bernoulli or Entringer numbers read by rows: T(n,k) is the number of down-up permutations of n+1 starting with k+1. 22

%I #90 Feb 06 2022 12:42:10

%S 1,1,1,1,2,2,2,4,5,5,5,10,14,16,16,16,32,46,56,61,61,61,122,178,224,

%T 256,272,272,272,544,800,1024,1202,1324,1385,1385,1385,2770,4094,5296,

%U 6320,7120,7664,7936,7936,7936,15872,23536,30656,36976,42272,46366,49136,50521,50521

%N Triangle of Euler-Bernoulli or Entringer numbers read by rows: T(n,k) is the number of down-up permutations of n+1 starting with k+1.

%D R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.

%H Reinhard Zumkeller, <a href="/A008282/b008282.txt">Rows n=1..120 of triangle, flattened</a>

%H V. I. Arnold, <a href="http://mi.mathnet.ru/eng/umn4470">The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups</a>, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.

%H J. L. Arregui, <a href="http://arXiv.org/abs/math.NT/0109108">Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles</a>, arXiv:math/0109108 [math.NT], 2001.

%H B. Bauslaugh and F. Ruskey, <a href="http://dx.doi.org/10.1007/BF01932127">Generating alternating permutations lexicographically</a>, Nordisk Tidskr. Informationsbehandling (BIT) 30 16-26 1990.

%H Carolina Benedetti, Rafael S. González D’León, Christopher R. H. Hanusa, Pamela E. Harris, Apoorva Khare, Alejandro H. Morales, and Martha Yip, <a href="https://www.cs.ox.ac.uk/people/dan.olteanu/papers/mo-amw18.pdf">The volume of the caracol polytope</a>, Séminaire Lotharingien de Combinatoire XX (2018), Article #YY, Proceedings of the 30th Conference on Formal Power, Series and Algebraic Combinatorics (Hanover), 2018.

%H Beáta Bényi and Péter Hajnal, <a href="https://arxiv.org/abs/1804.01868">Poly-Bernoulli Numbers and Eulerian Numbers</a>, arXiv:1804.01868 [math.CO], 2018.

%H Neil J. Y. Fan and Liao He, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p45">The Complete cd-Index of Boolean Lattices</a>, Electron. J. Combin., 22 (2015), #P2.45.

%H Dominique Foata and Guo-Niu Han, <a href="http://www-irma.u-strasbg.fr/~foata/paper/pub123Seidel.pdf">Seidel Triangle Sequences and Bi-Entringer Numbers</a>, November 20, 2013.

%H Dominique Foata and Guo-Niu Han, <a href="https://doi.org/10.1016/j.ejc.2014.06.007">Seidel Triangle Sequences and Bi-Entringer Numbers</a>, European Journal of Combinatorics, 42 (2014), 243-260. [See Corollary 1.3. In Eq. (1.10), the power of x should be k-1 rather than k.]

%H Dominique Foata and Guo-Niu Han, <a href="http://arxiv.org/abs/1601.04371">André Permutation Calculus; a Twin Seidel Matrix Sequence</a>, arXiv:1601.04371 [math.CO], 2016.

%H B. Gourevitch, <a href="http://www.pi314.net">L'univers de Pi</a>.

%H G. Kreweras, <a href="http://archive.numdam.org/article/MSH_1976__53__5_0.pdf">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30.

%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).

%H C. Poupard, <a href="http://dx.doi.org/10.1016/0012-365X(82)90293-X">De nouvelles significations énumeratives des nombres d'Entringer</a>, Discrete Math., 38 (1982), 265-271.

%H C. Poupard, <a href="http://dx.doi.org/10.1006/eujc.1997.0147">Two other interpretations of the Entringer numbers</a>, Eur. J. Combinat. 18 (1997) 939-943.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Boustrophedon_transform">Boustrophedon transform</a>.

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%F From _Emeric Deutsch_, May 15 2004: (Start)

%F Let E[j] = A000111(j) = j! * [x^j](sec(x) + tan(x)) be the up/down or Euler numbers. For 1 <= k < n,

%F T(n, k) = Sum_{i=0..floor((k-1)/2)} (-1)^i * binomial(k, 2*i+1) * E[n-2*i-1];

%F T(n,k) = Sum_{i=0..floor((n-k)/2)} (-1)^i * binomial(n-k, 2*i) * E[n-2*i];

%F T(n, k) = Sum_{i=0..floor((n-k)/2)} (-1)^i * binomial(n-k, 2*i) * E[n-2*i]; and

%F T(n, n) = E[n] for n >= 1. (End)

%F From _Petros Hadjicostas_, Feb 17 2021: (Start)

%F If n is even, then T(n,k) = k!*(n-k)!*[x^(n-k),y^k] cos(x)/cos(x + y).

%F If n is odd, then T(n,k) = k!*(n-k)!*[x^k,y^(n-k)] sin(x)/cos(x + y).

%F (These were adapted and corrected from the formulas in Corollary 1.3 in Foata and Guo-Niu Han (2014).) (End)

%F Comment from Masanobu Kaneko: (Start)

%F A generating function that applies for all n, both even and odd:

%F Sum_{n=0..oo} Sum_{k=0..n} T(n,k) x^(n-k}/(n-k)! * y^k/k! = {cos x + sin y}/cos(x + y).

%F (End) - _N. J. A. Sloane_, Feb 06 2022

%e Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins

%e 1

%e 1 1

%e 1 2 2

%e 2 4 5 5

%e 5 10 14 16 16

%e 16 32 46 56 61 61

%e ...

%e Each row is constructed by forming the partial sums of the previous row, reading from the right and repeating the final term.

%e T(4,3) = 5 because we have 41325, 41523, 42314, 42513 and 43512. All these permutations have length n+1 = 5, start with k+1 = 4, and they are down-up permutations.

%p f:=series(sec(x)+tan(x),x=0,25): E[0]:=1: for n from 1 to 20 do E[n]:=n!*coeff(f,x^n) od: T:=proc(n,k) if k<n then sum((-1)^i*binomial(k,2*i+1)*E[n-2*i-1],i=0..floor((k-1)/2)) elif k=n then E[n] else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..10);

%p # Alternatively:

%p T := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else

%p T(n, k - 1) + T(n - 1, n - k) fi end:

%p for n from 1 to 6 do seq(T(n,k), k=1..n) od; # _Peter Luschny_, Aug 03 2017

%p # Third program:

%p T := proc(n, k) local w: if 0 = n mod 2 then w := coeftayl(cos(x)/cos(x + y), [x, y] = [0, 0], [n - k, k]): end if: if 1 = n mod 2 then w := coeftayl(sin(x)/cos(x + y), [x, y] = [0, 0], [k, n - k]): end if: w*(n - k)!*k!: end proc:

%p for n from 1 to 6 do seq(T(n,k), k=1..n) od; # _Petros Hadjicostas_, Feb 17 2021

%t ro[1] = {1}; ro[n_] := ro[n] = (s = Accumulate[ Reverse[ ro[n-1]]]; Append[ s, Last[s]]); Flatten[ Table[ ro[n], {n, 1, 10}]] (* _Jean-François Alcover_, Oct 03 2011 *)

%t nxt[lst_]:=Module[{lst2=Accumulate[Reverse[lst]]},Flatten[Join[ {lst2,Last[ lst2]}]]]; Flatten[NestList[nxt,{1},10]] (* _Harvey P. Dale_, Aug 17 2014 *)

%o (Haskell)

%o a008282 n k = a008282_tabl !! (n-1) !! (k-1)

%o a008282_row n = a008282_tabl !! (n-1)

%o a008282_tabl = iterate f [1] where

%o f xs = zs ++ [last zs] where zs = scanl1 (+) (reverse xs)

%o -- _Reinhard Zumkeller_, Dec 28 2011

%Y Cf. A010094, A000111, A099959, A009766, A236935.

%K nonn,tabl,easy,nice

%O 1,5

%A _N. J. A. Sloane_

%E Example and Formula sections edited by _Petros Hadjicostas_, Feb 17 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 05:56 EDT 2024. Contains 372549 sequences. (Running on oeis4.)