login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007913 Squarefree part of n: a(n) is the smallest positive number m such that n/m is a square. 291
1, 2, 3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7, 29, 30, 31, 2, 33, 34, 35, 1, 37, 38, 39, 10, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 6, 55, 14, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 2, 73, 74, 3, 19, 77 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also called core(n). [Not to be confused with the squarefree kernel of n, A007947.]
Sequence read mod 4 gives A065882. - Philippe Deléham, Mar 28 2004
This is an arithmetic function and is undefined if n <= 0.
A note on square roots of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), lcm(A007947(b),c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n. [Corrected by M. F. Hasler, Mar 01 2018]
If n > 1, the quantity f(n) = log(n/core(n))/log(n) satisfies 0 <= f(n) <= 1; f(n) = 0 when n is squarefree and f(n) = 1 when n is a perfect square. One can define n as being "epsilon-almost squarefree" if f(n) < epsilon. - Kurt Foster (drsardonicus(AT)earthlink.net), Jun 28 2008
a(n) is the smallest natural number m such that product of geometric mean of the divisors of n and geometric mean of the divisors of m are integers. Geometric mean of the divisors of number n is real number b(n) = Sqrt(n). a(n) = 1 for infinitely many n. a(n) = 1 for numbers from A000290: a(A000290(n)) = 1. For n = 8; b(8) = sqrt(8), a(n) = 2 because b(2) = sqrt(2); sqrt(8) * sqrt(2) = 4 (integer). - Jaroslav Krizek, Apr 26 2010
Dirichlet convolution of A010052 with the sequence of absolute values of A055615. - R. J. Mathar, Feb 11 2011
Booker, Hiary, & Keating outline a method for bounding (on the GRH) a(n) for large n using L-functions. - Charles R Greathouse IV, Feb 01 2013
According to the formula a(n) = n/A000188(n)^2, the scatterplot exhibits the straight lines y=x, y=x/4, y=x/9, ..., i.e., y=x/k^2 for all k=1,2,3,... - M. F. Hasler, May 08 2014
The Dirichlet inverse of this sequence is A008836(n) * A063659(n). - Álvar Ibeas, Mar 19 2015
a(n) = 1 if n is a square, a(n) = n if n is a product of distinct primes. - Zak Seidov, Jan 30 2016
All solutions of the Diophantine equation n*x=y^2 or, equivalently, G(n,x)=y, with G being the geometric mean, are of the form x=k^2*a(n), y=k*sqrt(n*a(n)), where k is a positive integer. - Stanislav Sykora, Feb 03 2016
If f is a multiplicative function then Sum_{d divides n) f(a(d)) is also multiplicative. For example, A010052(n) = Sum_{d divides n) mu(a(d)) and A046951(n) = Sum_{d divides n) mu(a(d)^2). - Peter Bala, Jan 24 2024
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 1000 terms from T. D. Noe)
Krassimir T. Atanassov, On Some of Smarandache's Problems.
Krassimir T. Atanassov, On the 22nd, 23rd, and the 24th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 2, 80-82.
Andrew Booker, Ghaith Hiary, and Jon Keating, Detecting squarefree numbers, CNTA XII (2012).
John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv preprint arXiv:1105.3399 [math.GM], 2011.
Vlad Copil and Laurenţiu Panaitopol, Properties of a sequence generated by positive integers, Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, Nouvelle Série, Vol. 50 (98), No. 2 (2007), pp. 131-137; alternative link.
Florentin Smarandache, Only Problems, Not Solutions!, Xiquan Publ., Phoenix-Chicago, 1993.
Eric Weisstein's World of Mathematics, Squarefree Part.
FORMULA
Multiplicative with a(p^k) = p^(k mod 2). - David W. Wilson, Aug 01 2001
a(n) modulo 2 = A035263(n); a(A036554(n)) is even; a(A003159(n)) is odd. - Philippe Deléham, Mar 28 2004
Dirichlet g.f.: zeta(2s)*zeta(s-1)/zeta(2s-2). - R. J. Mathar, Feb 11 2011
a(n) = n/( Sum_{k=1..n} floor(k^2/n)-floor((k^2 -1)/n) )^2. - Anthony Browne, Jun 06 2016
a(n) = rad(n)/a(n/rad(n)), where rad = A007947. This recurrence relation together with a(1) = 1 generate the sequence. - Velin Yanev, Sep 19 2017
From Peter Munn, Nov 18 2019: (Start)
a(k*m) = A059897(a(k), a(m)).
a(n) = n / A008833(n).
(End)
a(A225546(n)) = A225546(A006519(n)). - Peter Munn, Jan 04 2020
From Amiram Eldar, Mar 14 2021: (Start)
Theorems proven by Copil and Panaitopol (2007):
Lim sup_{n->oo} a(n+1)-a(n) = oo.
Lim inf_{n->oo} a(n+1)-a(n) = -oo.
Sum_{k=1..n} 1/a(k) ~ c*sqrt(n) + O(log(n)), where c = zeta(3/2)/zeta(3) (A090699). (End)
a(n) = A019554(n)^2/n. - Jianing Song, May 08 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/30 = 0.328986... . - Amiram Eldar, Oct 25 2022
a(n) = A007947(A350389(n)). - Amiram Eldar, Jan 20 2024
MAPLE
A007913 := proc(n) local f, a, d; f := ifactors(n)[2] ; a := 1 ; for d in f do if type(op(2, d), 'odd') then a := a*op(1, d) ; end if; end do: a; end proc: # R. J. Mathar, Mar 18 2011
# second Maple program:
a:= n-> mul(i[1]^irem(i[2], 2), i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Jul 20 2015
seq(n / expand(numtheory:-nthpow(n, 2)), n=1..77); # Peter Luschny, Jul 12 2022
MATHEMATICA
data = Table[Sqrt[n], {n, 1, 100}]; sp = data /. Sqrt[_] -> 1; sfp = data/sp /. Sqrt[x_] -> x (* Artur Jasinski, Nov 03 2008 *)
Table[Times@@Power@@@({#[[1]], Mod[ #[[2]], 2]}&/@FactorInteger[n]), {n, 100}] (* Zak Seidov, Apr 08 2009 *)
Table[{p, e} = Transpose[FactorInteger[n]]; Times @@ (p^Mod[e, 2]), {n, 100}] (* T. D. Noe, May 20 2013 *)
Sqrt[#] /. (c_:1)*a_^(b_:0) -> (c*a^b)^2& /@ Range@100 (* Bill Gosper, Jul 18 2015 *)
PROG
(Magma) [ Squarefree(n) : n in [1..256] ]; // N. J. A. Sloane, Dec 23 2006
(PARI) a(n)=core(n)
(Haskell)
a007913 n = product $
zipWith (^) (a027748_row n) (map (`mod` 2) $ a124010_row n)
-- Reinhard Zumkeller, Jul 06 2012
(Python)
from sympy import factorint, prod
def A007913(n):
return prod(p for p, e in factorint(n).items() if e % 2)
# Chai Wah Wu, Feb 03 2015
(Sage)
[squarefree_part(n) for n in (1..77)] # Peter Luschny, Feb 04 2015
CROSSREFS
See A000188, A007947, A008833, A019554, A117811 for related information, specific to n.
See A027746, A027748, A124010 for factorization data for n.
Analogous sequences: A050985, A053165, A055231.
Cf. A002734, A005117 (range of values), A059897, A069891 (partial sums), A090699, A350389.
Related to A006519 via A225546.
Sequence in context: A326049 A357684 A072400 * A366244 A083346 A319652
KEYWORD
nonn,easy,mult,nice
AUTHOR
R. Muller, Mar 15 1996
EXTENSIONS
More terms from Michael Somos, Nov 24 2001
Definition reformulated by Daniel Forgues, Mar 24 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 01:06 EDT 2024. Contains 371964 sequences. (Running on oeis4.)