The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007857 Number of independent sets in rooted plane trees on n nodes. 4
1, 2, 8, 37, 184, 959, 5172, 28641, 162008, 932503, 5445934, 32197334, 192357788, 1159603592, 7045356104, 43098733353, 265240985112, 1641100253735, 10202295895890, 63696629668980, 399216722146770, 2510833297584165 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Equals the main diagonal of square array A130523. - Paul D. Hanna, Jun 06 2007
From Petros Hadjicostas, Aug 06 2020: (Start)
To prove R. J. Mathar's conjecture, let b(n) = A007226(n-1) = (2*/n)*binomial(3*(n-1), n-1) and c(n) = A000108(n-1) = binomial(2*(n-1), n-1)/n. Since a(n) = b(n) - c(n), it is enough to prove that each of the sequences (b(n): n >= 1) and (c(n): n >= 1) satisfies the same recurrence as (a(n): n >= 1).
For simplicity, denote the recurrence by f(n,0)*a(n) + f(n,1)*a(n-1) + f(n,2)*a(n-2) + f(n,3)*a(n-3) = 0. Let g(n) = 2*n*(2*n - 3)/(3*(3*n - 4)*(3*n - 5)) and h(n) = n/(2*(2*n - 3)). Then we can easily show that b(n-i) = b(n)* Product_{j=0..i-1} g(n-j) and c(n-i) = c(n)*Product_{j=0..i-1} h(n-j) for i >= 1.
Using a CAS (e.g. PARI), one can show that f(n,0) + f(n,1)*g(n) + f(n,2)*g(n)*g(n-1) + f(n,3)*g(n)*g(n-1)*g(n-2) = 0. Multiplying both sides by b(n), we get f(n,0)*b(n) + f(n,1)*b(n-1) + f(n,2)*b(n-2) + f(n,3)*b(n-3) = 0.
Again, using a CAS, one can show that f(n,0) + f(n,1)*h(n) + f(n,2)*h(n)*h(n-1) + f(n,3)*h(n)*h(n-1)*h(n-2) = 0. Multiplying both sides by c(n), we get f(n,0)*c(n) + f(n,1)*c(n-1) + f(n,2)*c(n-2) + f(n,3)*c(n-3) = 0. (End)
LINKS
M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics, 18(2) (1997), 195-210.
M. Klazar, Addendum Twelve Countings with Rooted Plane Trees, European Journal of Combinatorics, 18(6) (1997), 739-740.
FORMULA
a(n+1) = (2/(n+1))*C(3*n, n) - (1/(n+1))*C(2*n, n) = A007226(n) - A000108(n). - Paul Barry, Nov 05 2006
G.f.: A(x) = x/(1 - x*C(x)*F(x) - x*F(x)^2), where C(x) is g.f. of the Catalan numbers (A000108) (i.e., C(x) = 1 + x*C(x)^2) and F(x) is the g.f. of ternary numbers (A001764) (i.e., F(x) = 1 + x*F(x)^3). - Paul D. Hanna, Jun 06 2007
Conjecture: 2*n*(n - 1)*(2*n - 3)*(44*n - 69)*a(n) + (n - 1)*(176*n^3 - 9591*n^2 + 38703*n - 40640)*a(n-1) + (-17479*n^4 + 218005*n^3 - 959616*n^2 + 1797890*n - 1221920)*a(n-2) + 6*(3*n - 10)*(2*n - 7)*(3*n - 11)*(517*n - 1198)*a(n-3) = 0 for n >= 4. - R. J. Mathar, Nov 26 2012
PROG
(PARI) {a(n)=my(A000108, A001764); A000108=Ser(vector(n+1, r, binomial(2*r-2, r-1)/r)); A001764=Ser(vector(n+1, r, binomial(3*r-3, r-1)/(2*r-1))); polcoeff(x/(1-x*A000108*A001764-x*A001764^2 +x*O(x^n)), n)} \\ Paul D. Hanna, Jun 06 2007
CROSSREFS
Sequence in context: A046814 A361698 A305547 * A289541 A047729 A020076
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Paul Barry, Nov 05 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 01:31 EDT 2024. Contains 372536 sequences. (Running on oeis4.)