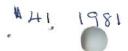
Scan
alt 46 A6091
Eureka,
Problems
Trive,
1980

2 pages



Questions

- 1. Find all real solutions of:
 - (i) $\sin(60^{\circ} + x) \sin(60^{\circ} x) = \sin x$;
 - (ii) $\cos^2 x \frac{3}{4} = \cos(x+30^\circ)\cos(x-30^\circ);$
 - (iii) $1 = \cos 4x \tan 43x \sin 4x$.
- 2. Prove that if a,b,c are integers such that a+b+c is even then there is an integer n such that

ab+n, ac+n, bc+n are all perfect squares.

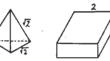
Be brief!

3. Three towns A,B,C are connected by seven paths as shown in the diagram.

A group of Archimedeans starting at A decides to go on a ramble round these paths in such a way that they travel along each of the seven paths exactly once.

In how many ways can this be done?

4. How many regular tetrahedra with sides of length $\sqrt{2}$ can be fitted into a box with inside dimensions of 1×2×2 ?



5. Dissect this shape into three congruent (allowing reflections) pieces:

6. What is the largest real number x for which there exist four different numbers in the interval [0,1] (i.e. 0≤x₁≤1) such that for any three of them which are not all equal

 $|x_0 + x_1 - 2x_2| \ge x$.

- 7. The following conversation was overheard at a maths. lecture where all mathematicians were either Pure or Applied:
 - A: I am Pure and so is C .
 - B: C is not Pure.
 - C: B is Pure or A is Applied.

Given that Pure mathematicians always tell the truth and Applied mathematicians always lie, what were A,B, and C; or is it impossible to tell? All three are mathematicians.

8. This 4×4 grid used to have a letter written in each square. The 8 "words" spelt across and down were: SATT SSAT STAS STSA

ATST ATAS TAST TATA .

What "word was spelt down the diagonal

from top left to bottom right?

9. If α is a root of the cubic equation: $x^3 - x^2 + x + 1 = 0$.

then of what cubic equation with integer coefficients is α^2 a root?

- 10. What is the next number in each of these sequences?
 - (i) 134, 93, 41, 11, 8, 3;
 - (ii) 1, 3, 25, 253, 3121;
 - (iii) 00000, 30103, 47712, 60206, 69897; ×
 - (iv) 2, 6, 20, 70, 252 . X
- 11. Give an example of a cubic polynomial $P(x) = ax^3 + bx^2 + cx + d$ (a=0) with integer coefficients such that P(0), P(1), P(2), P(3) and P(4) are all perfect squares of integers.
- 12. Solve in integers x & y, $(x+y)^2 (x+2)^2 (y+1)^2 = 1$.

6091

Then consider the operations that replace

a b c g d a wc a b f d e, and f+y e f+y e

We suspect, but haven't proved, that these generate a group which, if we work modulo scalar multiplication by w, is Janko's third group J_3 , of order 50,232,960. Can you prove this?

It suffices to show that it is <u>not</u> possible to find a sequence of these operations that will take you from

(We know that every vector with an odd number of non-zero coordinates can be taken to one of these, and that all non-zero vectors with evenly many non-zero coordinates are equivalent.)

It's fun playing with these operations, and surely <u>someone</u> must come up with the easy proof we have missed! Write to me when you do, and we'll publish it. Good luck!

Problems Drive

Answers

- (i) All real x.
 - (ii) No real x .
 - (iii) $x = n(4^{\circ})$, n integer. Note that $x = n(90^{\circ})$ does not work for odd n and coincides with the given solution for n even.
- 2. By example: $4n = a^2+b^2+c^2-2ab-2ac-2bc$ or $n = \frac{1}{4}/a+b-c)^2 - ab$ (etc.) .
- 3. 288 .
- 4. 5.
- 5.

- 6. $\frac{1}{2}$ (i.e. $(0, \frac{1}{2}, \frac{1}{2}, 1)$).
- 7. A Applied
 - B Applied
 - C Pure .
- 8. SAAT, e.g. STAS STSA SSAT STSA
 TATA TAST TATA SATT
 SSAT ATAS STAS ATAS
 ATST SATT ATST TAST
- 9. $n(x^3+x^2+3x-1) = 0$.
- 10. (1) 2 (Euclid algorithm).
 - (ii) 46651 $(=6^6 5)$.
 - (iii) 77815 (= $10^5 \log_{10} 6$, to the nearest integer).
 - (iv) 924 $= \frac{12!}{6! \cdot 6!}$
- 11. e.g. $6x(x-1)(x-2) = 6x^3-18x^2+12x$ $4x(x-1)(x-2)+25 = 4x^3-12x^2+8x+25$ $25+4(x-1)(x-2)(x-3) = 4x^3-24x^2+44x+1$ $-6(x-2)(x-3)(x-4) = -6x^3+54x^2-156x+144$ $25-4(x-2)(x-3)(x-4) = -4x^3+36x^2-104x-121$ $25-4(x-1)(x-2)(x-3) = -4x^3+24x^2-44x+49$ $25+8x(x-2)(x-4) = +8x^3\mp48x^2+64x+25$.
- 12. (x,y) = (6,3) (2,7)
 - (0,-3) (-4,1)
- -55