The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005990 a(n) = (n-1)*(n+1)!/6.
(Formerly M4551)
21

%I M4551 #81 Aug 09 2022 02:29:44

%S 0,1,8,60,480,4200,40320,423360,4838400,59875200,798336000,

%T 11416204800,174356582400,2833294464000,48819843072000,

%U 889218570240000,17072996548608000,344661117825024000,7298706024529920000,161787983543746560000

%N a(n) = (n-1)*(n+1)!/6.

%C Coefficients of Gandhi polynomials.

%C a(n) = Sum_{pi in Symm(n)} Sum_{i=1..n} max(pi(i)-i,0), i.e., the total positive displacement of all letters in all permutations on n letters. - _Franklin T. Adams-Watters_, Oct 25 2006

%C a(n) is also the sum of the excedances of all permutations of [n]. An excedance of a permutation p of [n] is an i (1 <= i <= n-1) such that p(i) > i. Proof: i is an excedance if p(i) = i+1, i+2, ..., n (n-i possibilities), with the remaining values of p forming any permutation of [n]\{p(i)} in the positions [n]\{i} ((n-1)! possibilities). Summation of i(n-i)(n-1)! over i from 1 to n-1 completes the proof. Example: a(3)=8 because the permutations 123, 132, 213, 231, 312, 321 have excedances NONE, {2}, {1}, {1,2}, {1}, {1}, respectively. - _Emeric Deutsch_, Oct 26 2008

%C a(n) is also the number of doubledescents in all permutations of {1,2,...,n-1}. We say that i is a doubledescent of a permutation p if p(i) > p(i+1) > p(i+2). Example: a(3)=8 because each of the permutations 1432, 4312, 4213, 2431, 3214, 3421 has one doubledescent, the permutation 4321 has two doubledescents and the remaining 17 permutations of {1,2,3,4} have no doubledescents. - _Emeric Deutsch_, Jul 26 2009

%C Equals the second right hand column of A167568 divided by 2. - _Johannes W. Meijer_, Nov 12 2009

%C Half of sum of abs(p(i+1) - p(i)) over all permutations on n, e.g., 42531 = 2 + 3 + 2 + 2 = 9, and the total over all permutations on {1,2,3,4,5} is 960. - _Jon Perry_, May 24 2013

%C a(n) gives the number of non-occupied corners in tree-like tableaux of size n+1 (see Gao et al. link). - _Michel Marcus_, Nov 18 2015

%C a(n) is the number of sequences of n+2 balls colored with at most n colors such that exactly three balls are the same color as some other ball in the sequence. - _Jeremy Dover_, Sep 26 2017

%C a(n) is the number of triangles (3-cycles) in the (n+1)-alternating group graph. - _Eric W. Weisstein_, Jun 09 2019

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A005990/b005990.txt">Table of n, a(n) for n = 1..300</a>

%H D. Dumont, <a href="http://dx.doi.org/10.1215/S0012-7094-74-04134-9">Interpretations combinatoires des nombres de Genocchi</a>, Duke Math. J., 41 (1974), 305-318.

%H D. Dumont, <a href="/A001469/a001469_3.pdf">Interprétations combinatoires des nombres de Genocchi</a>, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)

%H Alice L. L. Gao, Emily X. L. Gao, and Brian Y. Sun, <a href="http://arxiv.org/abs/1511.05434">Zubieta's Conjecture on the Enumeration of Corners in Tree-like Tableaux</a>, arXiv:1511.05434 [math.CO], 2015. The second version of this paper has a different title and different authors: A. L. L. Gao, E. X. L. Gao, P. Laborde-Zubieta, and B. Y. Sun, Enumeration of Corners in Tree-like Tableaux and a Conjectural (a,b)-analogue, arXiv preprint arXiv:1511.05434v2, 2015.

%H Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfun.pdf">Enumerative Formulas for Some Functions on Finite Sets</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlternatingGroupGraph.html">Alternating Group Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>.

%F a(n) = A090672(n)/2.

%F a(n) = A052571(n+2)/6. - _Zerinvary Lajos_, May 11 2007

%F a(n) = Sum_{m=0..n} Sum_{k=-1..n} Sum_{j=1..n} n!/6, n >= 0. - _Zerinvary Lajos_, May 11 2007

%F If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j)) then a(n+1) = (-1)^(n-1)*f(n,1,-4), (n >= 1). - _Milan Janjic_, Mar 01 2009

%F E.g.f.: (-1+3*x)/(3!*(1-x)^3), a(0) = -1/3!. Such e.g.f. computations resulted from e-mail exchange with _Gary Detlefs_. - _Wolfdieter Lang_, May 27 2010

%F a(n) = ((n+3)!/2) * Sum_{j=i..k} (k+1)!/(k+3)!, with offset 0. - _Gary Detlefs_, Aug 05 2010

%F a(n) = (n+2)!*Sum_{k=1..n-1} 1/((2*k+4)*(k+3)). - _Gary Detlefs_, Oct 09 2011

%F a(n) = (n+2)!*(1 + 3*(H(n+1) - H(n+2)))/6, where H(n) is the n-th harmonic number. - _Gary Detlefs_, Oct 09 2011

%F With offset = 0, e.g.f.: x/(1-x)^4. - _Geoffrey Critzer_, Aug 30 2013

%F From _Amiram Eldar_, May 06 2022: (Start)

%F Sum_{n>=2} 1/a(n) = 3*(Ei(1) - gamma) - 6*e + 27/2, where Ei(1) = A091725, gamma = A001620, and e = A001113.

%F Sum_{n>=2} (-1)^n/a(n) = 3*(gamma - Ei(-1)) - 3/2, where Ei(-1) = -A099285. (End)

%p [ seq((n-1)*(n+1)!/6,n=1..40) ];

%p a:=n->sum(sum(sum(n!/6, j=1..n),k=-1..n),m=0..n): seq(a(n), n=0..19); # _Zerinvary Lajos_, May 11 2007

%p seq(sum(mul(j,j=3..n), k=3..n)/3, n=2..21); # _Zerinvary Lajos_, Jun 01 2007

%p restart: G(x):=x^3/(1-x)^2: f[0]:=G(x): for n from 1 to 21 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/3!,n=2..21); # _Zerinvary Lajos_, Apr 01 2009

%t Table[Sum[n!/6, {i, 3, n}], {n, 2, 21}] (* _Zerinvary Lajos_, Jul 12 2009 *)

%t Table[(n - 1) (n + 1)!/6, {n, 20}] (* _Harvey P. Dale_, Apr 07 2019 *)

%t Table[(n - 1) Pochhammer[4, n - 2], {n, 20}] (* _Eric W. Weisstein_, Jun 09 2019 *)

%t Table[(n - 1) Gamma[n + 2]/6, {n, 20}] (* _Eric W. Weisstein_, Jun 09 2019 *)

%t Range[0, 20]! CoefficientList[Series[x/(1 - x)^4, {x, 0, 20}], x] (* _Eric W. Weisstein_, Jun 09 2019 *)

%o (Magma) [(n-1)*Factorial(n+1)/6: n in [1..25]]; // _Vincenzo Librandi_, Oct 11 2011

%o (PARI) a(n)=(n-1)*(n+1)!/6 \\ _Charles R Greathouse IV_, May 24 2013

%Y Cf. A001715, A090672, A167568.

%Y Cf. A001113, A001620, A091725, A099285.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_

%E Better definition from Robert Newstedt

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 18:22 EDT 2024. Contains 372494 sequences. (Running on oeis4.)