The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005446 Denominators of expansion of -W_{-1}(-e^{-1-x^2/2}) where W_{-1} is Lambert W function.
(Formerly M3140)
11

%I M3140 #50 Nov 22 2022 02:32:33

%S 1,1,3,36,270,4320,17010,5443200,204120,2351462400,1515591000,

%T 2172751257600,354648294000,10168475885568000,7447614174000,

%U 1830325659402240000,1595278956070800000,2987091476144455680000

%N Denominators of expansion of -W_{-1}(-e^{-1-x^2/2}) where W_{-1} is Lambert W function.

%C See A299430/A299431 for more formulas; given g.f. A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n, then A(x)^2 = Sum_{n>=0} A299430(n)/A299431(n)*x^n.

%D E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A005446/b005446.txt">Table of n, a(n) for n = 0..100</a>

%H J. M. Borwein and R. M. Corless, <a href="http://www.jstor.org/stable/2589743">Emerging Tools for Experimental Mathematics</a>, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.

%H G. Marsaglia and J. C. W. Marsaglia, <a href="http://www.jstor.org/stable/2324749">A new derivation of Stirling's approximation to n!</a>, Amer. Math. Monthly, 97 (1990), 827-829.

%H J. C. W. Marsaglia, <a href="http://dx.doi.org/10.1080/00949658608810899">The incomplete gamma function and Ramanujan's rational approximation to exp(x)</a>, J. Statist. Comput. Simulation, 24 (1986), 163-168. [_N. J. A. Sloane_, Jun 23 2011]

%F G.f.: A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n satisfies log(A(x)) = A(x) - 1 - x^2/2.

%F a(n) = denominator of ((-1)^n * b(n)), where b(n) = (1/(n+1))*( b(n-1) - Sum_{j=2..n-1} j*b(j)*b(n-j+1) ) with b(0) = b(1) = 1 (from Borwein and Corless). - _G. C. Greubel_, Nov 21 2022

%e 1, 1/3, 1/36, -1/270, 1/4320, 1/17010, -139/5443200, 1/204120, -571/2351462400, ...

%e G.f.: A(x) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 + ... + A005447(n)/A005446(n)x^n + ...

%p Maple program from _N. J. A. Sloane_, Jun 23 2011, based on J. Marsaglia's 1986 paper:

%p a[1]:=1;

%p M:=25;

%p for n from 2 to M do

%p t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));

%p if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;

%p a[n]:=t1;

%p od:

%p s1:=[seq(a[n],n=1..M)];

%t terms = 18; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Denominator (* _Jean-François Alcover_, Jun 20 2013, updated Feb 21 2018 *)

%o (PARI) a(n)=local(A); if(n<1,n==0,A=vector(n,k,1); for(k=2,n,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); denominator(A[n])) /* _Michael Somos_, Jun 09 2004 */

%o (PARI) a(n)=if(n<1,n==0,denominator(polcoeff(serreverse(sqrt(2*(x-log(1+x+x^2*O(x^n))))),n))) /* _Michael Somos_, Jun 09 2004 */

%o (SageMath)

%o @CachedFunction

%o def b(n): return 1 if (n<2) else (1/(n+1))*( b(n-1) - sum( j*b(n-j+1)*b(j) for j in range(2,n) ))

%o def A005446(n): return denominator((-1)^n*b(n))

%o [A005446(n) for n in range(31)] # _G. C. Greubel_, Nov 21 2022

%Y Cf. A005447, A090804/A065973.

%Y Cf. A299430 / A299431 (A(x)^2), A299432 / A299433.

%K nonn,frac

%O 0,3

%A _N. J. A. Sloane_

%E Edited by _Michael Somos_, Jul 21 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 12:24 EDT 2024. Contains 372540 sequences. (Running on oeis4.)