login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005178 Number of domino tilings of 4 X (n-1) board.
(Formerly M3813)
27
0, 1, 1, 5, 11, 36, 95, 281, 781, 2245, 6336, 18061, 51205, 145601, 413351, 1174500, 3335651, 9475901, 26915305, 76455961, 217172736, 616891945, 1752296281, 4977472781, 14138673395, 40161441636, 114079985111, 324048393905 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Or, number of perfect matchings in graph P_4 X P_{n-1}.
a(0) = 0, a(1) = 1 by convention.
It is easy to see that the g.f. for indecomposable tilings, i.e., those that cannot be split vertically into smaller tilings, is g = x + 4x^2 + 2x^3 + 3x^4 + 2x^5 + 3x^6 + 2x^7 + 3x^8 + ... = x + 4x^2 + x^3*(2+3x)/(1-x^2); then g.f. = 1/(1-g) = (1-x^2)/(1-x-5x^2-x^3+x^4). - Emeric Deutsch, Oct 16 2006
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). - T. D. Noe, Dec 22 2008
From Artur Jasinski, Dec 20 2008: (Start)
All numbers in this sequence are:
congruent to 0 mod 100 if n is congruent to 14 or 29 mod 30
congruent to 1 mod 100 if n is congruent to 0 or 1 or 12 or 16 or 27 or 28 mod 30
congruent to 5 mod 100 if n is congruent to 2 or 11 or 17 or 26 mod 30
congruent to 11 mod 100 if n is congruent to 3 or 25 mod 30
congruent to 36 mod 100 if n is congruent to 4 or 9 or 19 or 24 mod 30
congruent to 45 mod 100 if n is congruent to 8 or 20 mod 30
congruent to 51 mod 100 if n is congruent to 13 or 15 mod 30
congruent to 61 mod 100 if n is congruent to 10 or 18 mod 30
congruent to 81 mod 100 if n is congruent to 6 or 7 or 21 or 22 mod 30
congruent to 95 mod 100 if n is congruent to 5 or 23 mod 30
(End)
This is the case P1 = 1, P2 = -7, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 31 2014
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics I, p. 292.
LINKS
Steve Butler, Jason Ekstrand, Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 158.
Curtis Cooper and Robert E. Kennedy, Problem B-735: Soln 1, Problem B-735: Soln 2, Square Root of a Recurrence, The Fibonacci Quarterly, 32(2):185-186, May 1994, and 32(4):374-375, Aug 1994.
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Simone Rinaldi and D. G. Rogers, Indecomposability: polyominoes and polyomino tilings, The Mathematical Gazette 92.524 (2008): 193-204.
David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982.
Thotsaporn ”Aek” Thanatipanonda, Statistics of Domino Tilings on a Rectangular Board, Fibonacci Quart. 57 (2019), no. 5, 145-153. See p. 151.
Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
H. C Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
Li Zhou, Northwestern University Math Problem Solving Group, Christopher Carl Heckman and Jerry Minkus, Tiling 4-Rowed Rectangles with Dominoes: 11187, The American Mathematical Monthly 114 (2007): 554-556.
FORMULA
a(n) = a(n-1) + 5*a(n-2) + a(n-3) - a(n-4).
G.f.: x*(1 - x^2)/(1 - x - 5*x^2 - x^3 + x^4).
Limit_{n->infinity} a(n)/a(n-1) = (1 + sqrt(29) + sqrt(14 + 2*sqrt(29)) /4 = 2.84053619409... - Philippe Deléham, Jun 12 2005
a(n) = (5*sqrt(29)/145)*(((1+sqrt(29)+sqrt(14+2*sqrt(29)))/4)^n+((1+sqrt(29)-sqrt(14+2*sqrt(29)))/4)^n-((1-sqrt(29)+sqrt(14-2*sqrt(29)))/4)^n-((1-sqrt(29)-sqrt(14-2*sqrt(29)))/4)^n). - Tim Monahan, Jul 30 2011
From Peter Bala, Mar 31 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(29))/4 and beta = (1 - sqrt(29))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 7/4; 1, 1/2].
a(n) = U(n-1,i*(1 + sqrt(5))/4)*U(n-1,i*(1 - sqrt(5))/4), where U(n,x) denotes the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = A129113(n+2) - A129113(n). - R. J. Mathar, May 03 2021
EXAMPLE
For n=2 the graph is
. o-o-o-o
and there is one perfect tiling:
. o-o o-o
For n=3 the graph is
. o-o-o-o
. | | | |
. o-o-o-o
and there are five perfect tilings:
. o o o o
. | | | |
. o o o o
two like:
. o o o-o
. | | ...
. o o o-o
and this
. o-o o-o
. .......
. o-o o-o
and this
. o o-o o
. | ... |
. o o-o o
a(n+1)=r(n)-r(n-2), r(n)=if n=0 then 1 else sum(sum(binomial(k,j)*sum(binomial(j,i-j)*5^(i-j)*binomial(k-j,n-i-3*(k-j))*(-1)^(n-i-3*(k-j)),i,j,n-k+j),j,0,k),k,1,n), n>1. - Vladimir Kruchinin, Sep 08 2010
MAPLE
a[0]:=1: a[1]:=1: a[2]:=5: a[3]:=11: for n from 4 to 26 do a[n]:=a[n-1]+5*a[n-2]+a[n-3]-a[n-4] od: seq(a[n], n=0..26); # Emeric Deutsch, Oct 16 2006
A005178:=-(-1-4*z-z**2+z**3)/(1-z-5*z**2-z**3+z**4) # conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence apart from an initial 1
MATHEMATICA
CoefficientList[Series[x(1-x^2)/(1-x-5x^2-x^3+x^4), {x, 0, 30}], x] (* T. D. Noe, Dec 22 2008 *)
LinearRecurrence[{1, 5, 1, -1}, {0, 1, 1, 5}, 28] (* Robert G. Wilson v, Aug 08 2011 *)
a[0] = 0; a[n_] := Product[2(2+Cos[2j Pi/5]+Cos[2k Pi/n]), {k, 1, (n-1)/2}, {j, 1, 2}] // Round;
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 20 2018 *)
PROG
(Maxima) r(n):=if n=0 then 1 else sum(sum(binomial(k, j)*sum(binomial(j, i-j)*5^(i-j)*binomial(k-j, n-i-3*(k-j))*(-1)^(n-i-3*(k-j)), i, j, n-k+j), j, 0, k), k, 1, n); a(n):=r(n)-r(n-2); /* Vladimir Kruchinin, Sep 08 2010 */
CROSSREFS
Row 4 of array A099390.
For all matchings see A033507.
Cf. A003757. - T. D. Noe, Dec 22 2008
Bisection (odd part) gives A188899. - Alois P. Heinz, Oct 28 2012
Column k=2 of A250662.
Sequence in context: A054854 A188161 A323352 * A065315 A065317 A171268
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, David Singmaster, Frans J. Faase
EXTENSIONS
Amalgamated with (former) A003692, Dec 30 1995
Name changed and 0 prepended by T. D. Noe, Dec 22 2008
Edited by N. J. A. Sloane, Nov 15 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 09:23 EDT 2024. Contains 371782 sequences. (Running on oeis4.)