Arctanh(z) and the Legendre polynomials

Peter Bala, March 192024

Gauss's continued fraction for the function arctanh(z) is $z /\left(1-1^{\wedge} 2^{\star} z^{\wedge} 2 /\left(3-2^{\wedge} 2 \star z^{\wedge} 2 /\left(5-3^{\wedge} 2 * z^{\wedge} 2 /(7-\ldots)\right)\right)\right) .$. (1) valid for complex z not in either of the intervals (-oo, -1] or [1, oo).

In this note we find expressions in terms of Legendre polynomials for both the numerator and denominator polynomials of the n-th convergent of Gauss's continued fraction.

This allows us to give rapidly converging series for some wellknown constants.

We begin by replacing z with $1 / z$ in (1) and then making use of equivalence transformations to obtain the continued fraction representation
$\operatorname{arctanh}(1 / z)=$
$1 /\left(z-1 /\left(3^{\star} z-2^{\wedge} 2 /\left(5^{\star} z-3^{\wedge} 2 /\left(7 * z-\ldots-(n-1)^{\wedge} 2 /\right.\right.\right.\right.$
$\left.\left.\left.\left((2 * \mathrm{n}-1){ }^{*} \mathrm{z}-\ldots\right)\right)\right)\right)$
valid for complex z not in the closed interval [-1, 1].

Let $N(n, z) / D(n, z)$ denote the n-th convergent to the continued fraction (2):
$N(n, z) / D(n, z)=1 /\left(z-1 /\left(3^{*} z-2^{\wedge} 2 /\left(5^{*} z-3^{\wedge} 2 /\left(7{ }^{*} z-\ldots-\right.\right.\right.\right.$ $\left.\left.\left.(n-1)^{\wedge} 2 /((2 * n-1) * z)\right)\right)\right)$.

The first four convergents (numbered 1 through 4) are

$$
1 / z, \quad 3^{\star} z /\left(3^{\star} z^{\wedge} 2-1\right), \quad z^{\star}\left(4^{\star} z^{\wedge} 2-15\right) /\left(3^{\star}\left(3^{\star} z^{\wedge} 2-5\right)\right) \text { and }
$$

```
5*z*(21 - 11*z^2)/(3*(3*z^4 - 30* z^2 + 35)).
```

By the elementary theory of continued fractions, both the sequence of numerator polynomials $\{N(n, z)\}$ and the sequence of denominator polynomials $\{D(n, z)\}$ satisfy the 3 -term recurrence

$$
u(n, z)=(2 * n-1) * z * u(n-1, z)-(n-1) \wedge 2 * u(n-2, z) \ldots \text { (3) }
$$

for n >= 3, with the initial values

$$
N(1, z)=1, \quad N(2, z)=3 * z
$$

and

$$
D(1, z)=z, \quad D(2, z)=3^{\star} z^{\wedge} 2-1 .
$$

The following theorem gives explicit expressions for the polynomials $N(n, z)$ and $D(n, z)$ in terms of Legendre polynomials.

Theorem. Let $P(n, z)$ denote the n-th Legendre polynomial. Then
(i) $D(n, z)=n!* P(n, z)$
(ii) $N(n, z)=D(n, z) * \operatorname{Sum}_{-}\{k=1 \ldots n\} 1 /(k * P(k-1, z) * P(k, z))$

Proof.
The Legendre polynomials satisfy the 3-term recurrence

```
n*P(n, z) = (2*n - 1)*z*P(n-1, z) - (n - 1)*P(n-2, z) ... (4)
with P(1, z) = z and P(2, z) = (3* z^2 - 1)/2. Thus (i) holds
for n = 1 and n = 2.
Multiplying (4) by (n - 1)! we see that the polynomial sequence
{n!*P(n, z)} satisfies the same recurrence (3)
    u(n, z) = (2*n - 1)* z*u(n-1, z) - (n - 1)^2*u(n-2, z)
```

satisfied by the denominator polynomials $D(n, z)$, and with the
same initial conditions.

Thus the polynomial sequences $\{D(n, z)\}$ and $\{n!* P(n, z)\}$ are identical, completing the proof of (i).
(ii) Define

$$
\begin{equation*}
A(n, z)=D(n, z) * \operatorname{Sum}_{-}\{k=1 \ldots n\} 1 /(k * P(k-1, z) * P(k, z)) \ldots \text { (5) } \tag{5}
\end{equation*}
$$

We calculate the initial values

$$
A(1, z)=1=N(1, z)
$$

and

$$
A(2, z)=3 * z=N(2, z) .
$$

We show that the sequence $\{A(\mathrm{n}, \mathrm{z})\}$ also satisfies the 3 -term recurrence (3) satisfied by the sequence $\{N(n, z\}\}$, hence proving that $A(n, z)=N(n, z)$ for all n.

From (5),

$$
\begin{aligned}
A(n+1, z)= & D(n+1, z) * \operatorname{Sum}_{-}\{k=1 \ldots n+1\} 1 /(k * P(k-1, z) * P(k, z)) \\
= & D(n+1, z) * \operatorname{Sum}_{-}\{k=1 \ldots n\} 1 /(k * P(k-1, z) * P(k, z)) \\
& +D(n+1, z) /((n+1) * P(n, z) * P(n+1, z)) \\
= & (D(n+1, z) / D(n, z)) * A(n, z) \\
& +D(n+1, z) /((n+1) * P(n, z) * P(n+1, z)) .
\end{aligned}
$$

Substituting the value $D(n, z)=n!* P(n, z)$ from part (i) and multiplying both sides of the resulting identity by $P(n, z)$ we find that

$$
\begin{equation*}
P(n, z) * A(n+1, z)=(n+1) * P(n+1, z) * A(n, z)+n!. \tag{6}
\end{equation*}
$$

Hence
$P(n+1, z) * A(n+2, z)=(n+2) * P(n+2, z) * A(n+1, z)+(n+1)!$

Multiply (6) by $n+1$, subtract the result from (7) and then replace n with n - 2. Making use of the recurrence equation
(4) for the Legendre polynomials we find after a short calculation that $A(n, z)$ satisfies the same 3 -term recurrence (3)

$$
A(n, z)=(2 * n-1) \star_{z} \star_{A}(n-1, z)-(n-1) \wedge 2 * A(n-2, z)
$$

satisfied by the numerator polynomials $N(n, z)$, completing the proof of part (ii).

Corollary 1.

$$
\begin{aligned}
\operatorname{arctanh}(1 / z) & =\lim _{-}\{n->00\} N(n, z) / D(n, z) \\
= & \operatorname{Sum}_{-}\{k>=1\} 1 /(k \star P(k, z) \star P(k-1, z))
\end{aligned}
$$

valid for complex z not in the closed interval [-1, 1].
This result allows us to give rapidly converging series for values of some well-known constants, for example,
i*atanh(1/i) = Pi/4 = Sum_\{n >= 1\} i/(n*P(n, i)*P(n-1, i)),
$2 * \operatorname{arctanh}(1 / 2)=\log (3)=2 * \operatorname{Sum}_{-}(\mathrm{n}>=1\} 1 /(\mathrm{n} * P(\mathrm{n}, 2) * P(\mathrm{n}-1,2))$ and
$2 * \operatorname{arctanh}(1 / 3)=\log (2)=2 * \operatorname{Sum}_{-}\{\mathrm{n}>=1\} 1 /(\mathrm{n} * P(\mathrm{n}, 3) * P(\mathrm{n}-1,3))$. The last result is due to Burnside.

Corollary 2.

The n-th convergent of Gauss's continued fraction (1)
$z /\left(1-1^{\wedge} 2{ }^{\star} z^{\wedge} 2 /\left(3-2^{\wedge} 2{ }^{\star} z^{\wedge} 2 /\left(5-\ldots(n-1)^{\wedge} 2{ }^{\star} z^{\wedge} 2 /\left(2{ }^{\star} n-1\right)\right)\right)\right)$
is equal to $N(n, 1 / z) / D(n, 1 / z)$.
The finite continued fraction has a Taylor expansion around $z=$ 0 equal to
$z+z^{\wedge} 3 / 3+z^{\wedge} 5 / 5+z^{\wedge} 7 / 7+\ldots+z^{\wedge}\left(2 *_{n}-1\right) /\left(2 *_{n}-1\right)+$ $O\left(z^{\wedge}(2 * n+1)\right)$.

Thus the rational function $N(n, 1 / z) / D(n, 1 / z)$ is a Padé approximant to arctanh(z): more precisely, $N(2 * n+1,1 / z) / D(2 * n+1$, $1 / z)$ is the $[2 * n+1,2 * n]$ Padé approximant to arctanh(z) and $N(2 * n, 1 / z) / D(2 * n, 1 / z)$ is the $[2 * n-1,2 * n]$ Padé approximant to $\operatorname{arctanh}(z)$.

