login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003645 a(n) = 2^n * C(n+1), where C(n) = A000108(n) Catalan numbers. 21
1, 4, 20, 112, 672, 4224, 27456, 183040, 1244672, 8599552, 60196864, 426008576, 3042918400, 21909012480, 158840340480, 1158600130560, 8496400957440, 62605059686400, 463277441679360, 3441489566760960, 25654740406763520, 191852841302753280, 1438896309770649600 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Number of nonisomorphic unrooted unicursal planar maps with n+2 edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency). - Valery A. Liskovets, Apr 07 2002
Total number of vertices in rooted Eulerian planar maps with n+1 edges.
Half the number of ways to dog-ear every page of an (n+1)-page book. - R. H. Hardin, Jun 21 2002
Convolution of A052701(n+1) with itself.
Number of Motzkin lattice paths with weights: 1 for up step, 4 for level step and 4 for down step. - Wenjin Woan, Oct 24 2004
The number of rooted bipartite n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005
Also the number of paths of length 2n+1 in a binary tree between two vertices that are one step away from each other. - David Koslicki (koslicki(AT)math.psu.edu), Nov 02 2010
2*a(n) for n > 1 is the number of increasing strict binary trees with 2n-1 nodes that simultaneously avoid 213 and 231 in the classical sense. For more information about increasing strict binary trees with an associated permutation, see A245894. - Manda Riehl, Aug 22 2014
REFERENCES
L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
LINKS
A. Claesson, S. Kitaev and A. de Mier, An involution on bicubic maps and beta(0,1)-trees, arXiv preprint arXiv:1210.3219 [math.CO], 2012. - From N. J. A. Sloane, Jan 01 2013
Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
Huyile Liang, Jeffrey Remmel, Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 13.
V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., Vol. 282, No. 1-3 (2004), pp. 209-221.
V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., Vol. 36, No.4 (2006), pp. 364-387.
Youngja Park and SeungKyung Park, Enumeration of generalized lattice paths by string types, peaks, and ascents, Discrete Mathematics, Vol. 339, No. 11 (2016), pp. 2652-2659.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seq., Vol. 9 (2006), Article 06.1.1.
FORMULA
a(n) = A052701(n+2)/2.
2*a(n) matches the odd-indexed terms of A090375.
a(n) = 2^n * binomial(2n+3, n+1) / (2n+3). - Len Smiley, Feb 24 2006
G.f.: (1-4x-sqrt(1-8x))/(8x^2) = C(2x)^2, where C(x) is the g.f. for Catalan numbers, A000108.
From Gary W. Adamson, Jul 12 2011: (Start)
Let M = the following production matrix:
2, 2, 0, 0, 0, ...
2, 2, 2, 0, 0, ...
2, 2, 2, 2, 0, ...
2, 2, 2, 2, 2, ...
...
a(n) = sum of top row terms in M^n. Example: top row of M^3 = (40, 40, 24, 8, 0, 0, 0, ...), sum = 112 = a(3). (End)
D-finite with recurrence (n+2)*a(n) - 4*(2n+1)*a(n-1) = 0. - R. J. Mathar, Apr 01 2012
E.g.f.: a(n) = n!* [x^n] exp(4*x)*BesselI(1, 4*x)/(2*x). - Peter Luschny, Aug 25 2012
Expansion of square of continued fraction 1/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - ...)))). - Ilya Gutkovskiy, Apr 19 2017
From Amiram Eldar, Mar 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 38/49 + 192*arcsin(sqrt(1/8))/(49*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 14/27 + 32*log(2)/81. (End)
a(n) = Product_{1 <= i <= j <= n} (i + j + 2)/(i + j - 1). Cf. A001700. - Peter Bala, Feb 22 2023
MAPLE
A003645:=n->2^n*binomial(2*n+3, n+1)/(2*n+3): seq(A003645(n), n=0..30); # Wesley Ivan Hurt, Aug 23 2014
MATHEMATICA
Table[2^n CatalanNumber[n+1], {n, 0, 20}] (* Harvey P. Dale, May 07 2013 *)
PROG
(PARI) a(n)=if(n<0, 0, 2^n*(2*n+2)!/(n+1)!/(n+2)!)
(Magma) [2^n*Binomial(2*n+3, n+1)/(2*n+3) : n in [0..30]]; // Wesley Ivan Hurt, Aug 23 2014
CROSSREFS
Third row of array A102539.
Column of array A073165.
Sequence in context: A136783 A227726 A080609 * A081085 A212326 A192624
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 13:35 EDT 2024. Contains 371254 sequences. (Running on oeis4.)