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Let ,  be coprime integers such that  ≥ 1,  +  ≥ 1. The Prime Number

Theorem for Arithmetic Progressions implies that

ln (lcm1≤≤ {  + }) ∼ 

as →∞, where the constant  is
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(independent of ) and  is the Euler totient function [1, 2]. What happens if we

replace the linear polynomial  +  by a quadratic polynomial 2 +  + ? On

the one hand, if the quadratic is reducible over the integers, then there is not much

change (the growth rate is still  for some new rational number ). On the other

hand, if the quadratic is irreducible over the integers, then there is a more interesting

outcome [3]:
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as →∞, where the constant  will occupy our attention for the remainder of this

essay.

Henceforth we set  = 1,  = 0,  ∈ {1 2−2}. It follows that the fundamental

discriminant  ∈ {−4−8 8}. The constant  for our three special cases is
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=

⎧⎨⎩ −00662756342 if  = 1

−04895081630 if  = 2

03970903472 if  = −2
As an example, if  = 1, we have [4]
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where Λ is Gauss’ lemniscate constant [5]; it can be shown here that

 = −3− 3
2
ln(2) + 2 + 4̃

where ̃ = 07047534517 is the second-order constant corresponding to non-hypotenuse

numbers [6, 7]. Similar relationships with second-order constants listed in [8] can be

found.

Cilleruelo [3] further noted that, in the general case,

 = 0 +  + ()

where

0 =  − 1− 2 ln(2)−
∞X
=1
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= −11725471674

is universal,
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depends only on , and () is too complicated to reproduce (but is equal to

(32) ln(2) for our three special cases). Although other irreducible quadratics are

examined in [3], we note the absence of 2±3 and wonder what can be deduced here.
See also [9, 10, 11, 12].
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