Cilleruelo's LCM Constants

Steven Finch

October 16, 2013
Let a, b be coprime integers such that $a \geq 1, a+b \geq 1$. The Prime Number Theorem for Arithmetic Progressions implies that

$$
\ln \left(\operatorname{lcm}_{1 \leq k \leq n}\{a k+b\}\right) \sim A n
$$

as $n \rightarrow \infty$, where the constant A is

$$
A=\frac{a}{\varphi(a)} \sum_{\substack{1 \leq j \leq a, \operatorname{gcd}(j, a)=1}} \frac{1}{j}
$$

(independent of b) and φ is the Euler totient function [1, 2]. What happens if we replace the linear polynomial $a x+b$ by a quadratic polynomial $a x^{2}+b x+c$? On the one hand, if the quadratic is reducible over the integers, then there is not much change (the growth rate is still $A n$ for some new rational number A). On the other hand, if the quadratic is irreducible over the integers, then there is a more interesting outcome [3]:

$$
\ln \left(\operatorname{lcm}_{1 \leq k \leq n}\left\{a k^{2}+b k+c\right\}\right)=n \ln (n)+B n+o(n)
$$

as $n \rightarrow \infty$, where the constant B will occupy our attention for the remainder of this essay.

Henceforth we set $a=1, b=0, c \in\{1,2,-2\}$. It follows that the fundamental discriminant $d \in\{-4,-8,8\}$. The constant B for our three special cases is

$$
\begin{aligned}
B & =\gamma-1-\frac{1}{2} \ln (2)-\sum_{k=1}^{\infty}\left(\frac{\zeta^{\prime}\left(2^{k}\right)}{\zeta\left(2^{k}\right)}-\frac{L_{d}^{\prime}\left(2^{k}\right)}{L_{d}\left(2^{k}\right)}+\frac{\ln (2)}{2^{2^{k}}-1}\right)+\frac{L_{d}^{\prime}(1)}{L_{d}(1)} \\
& = \begin{cases}-0.0662756342 \ldots & \text { if } c=1, \\
-0.4895081630 \ldots & \text { if } c=2, \\
0.3970903472 \ldots & \text { if } c=-2 .\end{cases}
\end{aligned}
$$

As an example, if $c=1$, we have [4]

$$
\frac{L_{-4}^{\prime}(1)}{L_{-4}(1)}=\ln \left(2 \pi e^{\gamma} \frac{\Gamma\left(\frac{3}{4}\right)^{2}}{\Gamma\left(\frac{1}{4}\right)^{2}}\right)=\ln \left(\frac{\pi^{2} e^{\gamma}}{2 \Lambda^{2}}\right)
$$

[^0]where Λ is Gauss' lemniscate constant [5]; it can be shown here that
$$
B=-3-\frac{3}{2} \ln (2)+2 \gamma+4 \tilde{C}
$$
where $\tilde{C}=0.7047534517 \ldots$ is the second-order constant corresponding to non-hypotenuse numbers $[6,7]$. Similar relationships with second-order constants listed in [8] can be found.

Cilleruelo [3] further noted that, in the general case,

$$
B=C_{0}+C_{d}+C(f)
$$

where

$$
C_{0}=\gamma-1-2 \ln (2)-\sum_{k=1}^{\infty} \frac{\zeta^{\prime}\left(2^{k}\right)}{\zeta\left(2^{k}\right)}=-1.1725471674 \ldots
$$

is universal,

$$
C_{d}=\sum_{k=0}^{\infty} \frac{L_{d}^{\prime}\left(2^{k}\right)}{L_{d}\left(2^{k}\right)}-\sum_{p \mid d} \sum_{k=1}^{\infty} \frac{\ln (p)}{p^{2^{k}}-1}
$$

depends only on d, and $C(f)$ is too complicated to reproduce (but is equal to $(3 / 2) \ln (2)$ for our three special cases). Although other irreducible quadratics are examined in [3], we note the absence of $x^{2} \pm 3$ and wonder what can be deduced here. See also $[9,10,11,12]$.

References

[1] P. Bateman, J. Kalb and A. Stenger, A limit involving least common multiples, Amer. Math. Monthly 109 (2002) 393-394.
[2] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A003418, A193181.
[3] J. Cilleruelo, The least common multiple of a quadratic sequence, Compos. Math. 147 (2011) 1129-1150; arXiv:1001.3438; MR2822864 (2012f:11185).
[4] S. R. Finch, Quadratic Dirichlet L-series, unpublished note (2005).
[5] S. R. Finch, Gauss' lemniscate constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 420-423.
[6] P. Moree, Counting numbers in multiplicative sets: Landau versus Ramanujan, Math. Newsl. 21 (2011) 73-81; arXiv:1110.0708; MR3012680.
[7] S. R. Finch, Landau-Ramanujan constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 98-104.
[8] S. R. Finch, Prime number theorem, unpublished note (2007).
[9] J. Rué, P. Šarka and A. Zumalacárregui, On the error term of the logarithm of the lcm of a quadratic sequence, J. Théor. Nombres Bordeaux 25 (2013) 457-470; arXiv:1110.0939; MR3228315.
[10] G. Qian, Q. Tan and S. Hong, The least common multiple of consecutive terms in a quadratic progression, Bull. Aust. Math. Soc. 86 (2012) 389-404; arXiv:1208.5119; MR2995891.
[11] B. Farhi, Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory 125 (2007) 393-411; MR2332595 (2008i:11001).
[12] S.-M. Oon, Note on the lower bound of least common multiple, Abstr. Appl. Anal. 2013, Art. ID 218125; MR3034956.

[^0]: ${ }^{0}$ Copyright © 2013 by Steven R. Finch. All rights reserved.

