HERMAN P. ROBINSON

31 DIABLO CIRCLE
LAFAYETTE, CA 94549
(415) 283-1861

13 October 1975

Dear Neil:

Fred Gruenberger says he has a sequence of 1000 terms provided by some unknown person a few years ago, and the nature of the sequence is uknown to him. He would like it identified. Do you recognize it? The terms he sent me are

3 4 5 7 10 14 20 29 43 64 95 142 212 317 475 712 1067 1600 2399 3598 5396 8093 12139 18208 27311 40966 61448 ...

The ratios of adjacent terms seem to be approaching 3/2, but I can't match be sequence or ones simply derived from it with anything in your book. Whether the term is even or odd seems somewhat random. I couldn't find a simple recurrence for the series or for its first or second differences.

I've asked Fred for some larger terms, mainly to see how close the ratio of terms gets to 3/2. He says the 1000th term has 177 digits, which is consistent with a ratio of 3/2.

Belated birthday greetings to you.

Sincerely,

Herman

	Ne	. 0		
	IN 6	en	- · · · · · · · · · · · · · · · · · · ·	
			Your friend's puzzle sequence	3 45 7 10
	0.0	0	s to satisfy	
			s to say	
			$E_{n+1} = E_n + \left[\frac{1}{2}(E_n - 1)\right]$	
in it is				
				Lochi
	n ed t			
				Z4 x 75
安林 五				
	(;	. 0	to even: ton: = = [(3tn-2)	
			n som.	
			to odd: toti = 1 (3th -1)	
1922				
0				
		+		
ALCOHOL:	1 4 4	1		

Bell Laboratories

600 Mountain Avenue Murray Hill, New Jersey 07974 Phone (201) 582-3000

November 4, 1975

Mr. H. P. Robinson 31 Diablo Circle Lafayette, California 94549

Dear Herman:

My colleage C. L. Mallows by a great stroke of genius found a recurrence for Fred Gruenberger's sequence

3, 4, 5, 7, 10, 14, 20, 29, 43, 64, 95, 142, ...

It is

$$t_{n+1} = t_n + \left[\frac{1}{2}(t_n-1)\right],$$

where [x] denotes the integer part of x. In other words,

$$t_{n+1} = \frac{1}{2} (3t_n - 2) \text{ if } t_n \text{ is even,}$$

$$t_{n+1} = \frac{1}{2} (3t_n - 1) \text{ if } t_n \text{ is odd.}$$

Best regards.

MH-1216-NJAS=mv

N. J. A. Sloane THIS COPY FOR

Copy to Messrs. C. L. Mallows Fred Gruenberger