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INTRODUCTION

An Euler graph is a graph in which every point has even degree. The
number of Euler graphs on a given number of points is treated as an appli-
cation of Burnside’s lemma. The number of connected Euler graphs is
recovered by using Riddell’s formula. The enumeration of self-complementary
Euler graphs is reduced to the enumeration of ordinary self-complementary

Lraphs by direct correspondence.

1. EULER GRAPHS ON 51 POINTS

Let H be a finite permutation group. Let |H| denote the order of A and
Ny the number of orbits of transitivity determined by H. If he H, let j,(h)
be the number of cycles of length m in the disjoint cycle decomposition of A.
Then according to Burnside’s lemma [1],

1
Ny =— i (h).
H H| thJ W(h)
By a labeled Euler graph on n points we mean one with point set {1, ..., n}.

Let S, be the group of all permutations on {1, ..., n}. For every ges,
there is a corresponding permutation g* on n-point labeled Euler graphs
which is obtained when the points are relabeled according to g. Let S,* be
the homomorphic image of S, under *. The number of orbits of §,* is the
number u, of nonisomorphic (unlabeled) Euler graphs on n points. That is,
every Euler graph on n points is isomorphic to one on {l, ..., n} as point
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set, and two of these are isomorphic if and only if a permutation of S,*
maps one to the other.
In order to apply Burnside’s lemma to the determination of

u, :NS,,*’

we need to know j,(g*) for all g e S,. It is convenient in this connection to
think of g as inducing a permutation ¢'® on unordered pairs, or ““lines,”
from {I,..., n}. A labeled graph G is left invariant by g if and only if, for
every cycle in the disjoint cycle decomposition of g‘?, all or none of the lines
of the cycle belong to G. Thus the total number of labeled graphs left invariant
by g is 2@ where v(g) = Y1_, j(g®).

The cycle type of ge S, is the ordered n-tuple (j,(g), J2@)s 5 gD
The number v(g) is an invariant of the cycle type of g, so we let v be defined
on cycle types; thus

v(<TUG)s - 50l 9)D) = ¥(g).

To find v(g) we consider separately the lines which join distinct point cycles
of g and those which join the points of some single cycle of g. The ij lines
which join distinct point cycles of lengths / and j are permuted by ¢¥ in
(4,J) cycles of length [, j] each. Here (i, j) and [/, ] are the greatest common
divisor and least common multiple, respectively, of i and j. The lines from a
single cycle of length 2/ + 1 fall into 7 cycles of length 2/ + 1, while the lines
from a cycle of length 2/ fall into i — 1 cycles of length 2i and one, the diagonal

cycle, of length i. Thus |>

V(o) ... 0,0) = Z.aioj(i,j) +2 i(UZi + 04544 +(;’)).
i<j i
This result is given by Harary [2, Eq. (10)].

It remains to determine how many of the 2"® graphs on {I,..., n}
left invariant by g are Euler graphs. First consider the points on a cycle of
even length induced by g. In a labeled graph left invariant by g they must all
have the same degree. The diagonal line cycle contributes Just one adjacency
at each point of the cycle, so that by including or excluding the diagonal
cycle as need be they can all be made to have even degree. Essentially, one
degree of freedom is lost for each cycle of even length induced by g in passing
from all labeled graphs left invariant by g to just those which are Euler.

If the total number of point cycles of g of odd length is m > 0, let b be
some cycle of odd length and let 4 be a set consisting of exactly one line
cycle joining b with each of the m — 1 other cycles of odd length. In construct-
ing a graph left invariant by g, each of the line cycles which is not in 4 may
be included or excluded at will from the line set of the graph. If ¢ is a point
cycle of g of odd length which is distinct from b, then any line cycle joining b
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contributes an odd number to the degree of every point of b and ¢. Thus the
condition that the points of ¢ have even degree determines whether or not
the unique line cycle of 4 which joins b and ¢ must be included in the graph.
If all of the points on other cycles of odd length have even degree, then the
points of b must have even degree too since any graph has an even number of
points of odd degree. In all, when m > 0 we lose m — | degrees of freedom
in the choice of line cycles for a graph invariant under g by requiring that
the points on odd cycles of g have even degree. When m = 0 the restriction
is vacuous; in general m — sg(m) degrees of freedom are lost, where sg(m) = 1
if m > 0 and sg(0) = 0.

If we include the effect of the Euler restriction on the even cycles too, we
see that' if g has cycle type (o, ..., ¢,» then

Ji(g*) = 2o

where

#(<01’-~:0'n>):V(<0'17~~~aan>)_zai+59(zazi+1)

= Yoo i)+ l(‘;) F = Do + 00 + sg(z_: az,.ﬂ). 1)

i<j
There are
n!
‘ [] %!
i
permutations in S, of cycle type (o, ..., 0, According to Burnside’s
Jemma, then, as it applies to S,*, we see that
PSSR e On))
u, =y ——=——, 2
=2 []i%! 2)
i
the sum being over all ordered n-tuples (g, ..., 0, such that n = Y iio;.

Together Eqs. (1) and (2) provide a straightforward method of finding u,,
the number of nonisomorphic Euler graphs on n points. In Table I the
partitions of 6 are listed with the numbers appropriate to evaluating ug
from (2); we find

210 27 24 26 23 23 22 26 24 23 22
ot aT s e st e TSt T

= 16.

Ug

1 The author is indebted to James C. Owings, Jr., for suggesting a simplification of the
proof.
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TABLE 1

THE PARTITIONS OF 6 AND NUMBERS
RELEVANT TO THE COMPUTATION OF g

6
Oty s 06D v({oy, ..., 06) Koy, ..., 06)) iHl o i
¢6,0,0,0,0,05 15 10 720
4,1,0,0,0,05 1 7 48
¢3,0,1,0,0,05 7 4 18
2,2,0,0,0,0> 9 6 16
¢2,0,0,1,0,0> 5 3 8
<1,1,1,0,0,05 5 3 6
¢1,0,0,0,1,05 3 2 5
€0,3,0,0,0,05 9 6 48
€0,1,0,1,0,05 5 3 8
€0,0,2,0,0,05 5 4 18
€0,0,0,0,0, 1> 3 2 6

In Fig. I are pictured the 16 Euler graphs on 6 points. There are 34 unlabeled
graphs on 5 points. This witnesses the failure of the unlabeled analog to the
correspondence, mentioned below, between labeled graphs on » points and
labeled Euler graphs on # + 1 points.

A graph has a circuit which contains every line exactly once only if it is a
connected Euler graph. Thus a natural interest attaches to the number U,
of nonisomorphic connected Euler graphs on # points. It is convenient to
deal with the associated generating functions. Let U(x) = o, UX" and
u(x) =Y 2., u,x". In Section | we described the computation of the co-
efficients of u(x); it is found that

2. CoNNECTED EULER GRAPHS

u(x) = x + x? + 2x> + 3x* + x5 4 16x° + 54x7 + 243x8 4+ -+

A standard application of Polyd’s counting methods, due to Riddell and
described by Harary [2, Eq. (33)], relates the generating function for the
connected graphs of a given sort to the generating function for all graphs of
the given sort. In our case this takes the form

1+ u(x) =exp i % U(x™).

n=1
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Fic. |. The 16 Euler graphs on 6 points.

Taking logarithms and completing the inversion by use of the Mobius
function u, we find

U= -3 ui Y

i=11 J
This relation applied to the first 8 coefficients of u(x) gives
U(x)=x+x3+x4+4x5+8x6+37x7+ 184x8 + -+ .

From Fig. 1 it can be verified that of the 16 Euler graphs on 6 points, 8
are connected.
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3. SELF-COMPLEMENTARY EULER GRAPHS

The complement G of a graph G has the same point set as G, and an
unordered pair of points is a line in G just if it is not a line in G. A self-
complementary graph is one which is isomorphic to i1ts complement. A
permutation on the points of G which is an isomorphism of G onto G is called
an inversion of G. We show first that every self-complementary Euler graph
has 4k + 1 points for some k. Then we establish a one-to-one correspondence
G < G*, between the self-complementary graphs on 4k points and the self-
complementary Euler graphs on 4k + 1 points. This correspondence is
simply an unlabeled version of the correspondence between labeled graphs
on n points and labeled Euler graphs on n + 1 points which is mentioned
by Read [3]. Self-complementary graphs on a given number of points have
been enumerated by Read [4].

Let G be a self-complementary graph and p be an inversion of G. The
unordered point pairs of any cycle induced by p'® must alternate between
being in G and being in G. Thus each line cycle must have even length. In
Section 1 the lengths of line cycles are determined from the lengths of the
point cycles. From that discussion it follows that in order that there be no
odd line cycles, there can be at most one odd point cycle, and that must have
length 1. Moreover a cycle of length 2/ must be such that i is even. Thus any
self-complementary graph must have 4k or 4k + 1 points for some k. If G
had 4k points, then a point of degree d in G is a point of degree 4k — 1 — J
in G, which is odd if d is even and vice versa. Thus an Euler self-comple-
mentary graph must have 4k + 1 points for some k.

Given a self-complementary graph G on 4k points, we form the graph G
by adding a new point g and connecting it to each of the points of G of odd
degree. First, G* is Eulerian since G has an even number of points of odd
degree. To see that GF is self-complementary, let ¢ be an inversion of G and
let 6® be the extension of ¢ to the points of GE which leaves ¢ fixed. A point
of even degree in G is mapped by o to a point of odd degree, and vice versa.
Thus the lines from g are mapped to nonlines and vice versa by ¢%; so ¢
is an inversion of GE.

To check that this correspondence is onto, let F be a self-complementary
Euler graph and ¢ an inversion of F. Let v be the unique fixed point of ¢, and
F — v the graph obtained from F by deleting v and the lines incident to v.
Then the restriction of ¢ to the points of F— v is an inversion of F — p,
so F — v Is self-complementary. Also it is clear that (F —)f ~ F, since the
points of odd degree in F — v are exactly the ones which were adjacent to
v in F. The length of every even point cycle of ¢ is a multiple of 4, so v is a
fixed point of ¢ while all of the other points are in cycles of even length of
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@*. Let I'(F) be the automorphism group of F, viewed as a permutation
group on the points of F. Then since ¢* € I'(G), the orbits of I'(F) are unions
of the cycles of ¢2. So there is exactly one orbit of I'(F) of odd cardinality,
and it contains v. Now suppose G® ~ F. Let v’ be the image of the point g
in GF under an isomorphism of G onto F. Then v’ is the fixed point of some
inversion of F, and so must be in the odd orbit of I'(F) which contains v.
Thus F —v ~ F — v, and of course F — v ~ GF —¢. But also G¥ — ¢ ~ G,
as seen just a few lines above. Hence G ~ F — v whenever G* ~ F, which
shows, finally, that this correspondence is one-to-one.

4. EXTENSIONS OF SECTION |

It is evidently not trivial to pass from u(x) to an enumeration u(x, y) of
Euler graphs with lines as well as points for an enumeration parameter.
From Fig. 1 it can be seen that the part of u(x, y) corresponding to 6 point
graphs is

X4+ 2+ p + 5+ 30+ 207 + 2%+ % + 20+ yt '),

which is woefully unsymmetric in the line parameter y. The processes of
Section 1 can be extended brutally to accommodate the line parameter, but
the result does not promise to be pleasing.
Another direction for generalization is the enumeration of graphs with
Lgny given number of points of even and odd degrees. This can be handled by
quite trivial alteration in the methods of Section 1.

REFERENCES

1. W. BURNSIDE, Theory of Groups of Finite Order, 2nd ed., Theorem VII, p. 191. Cambridge
Univ. Press, London and New York, (911 (reprinted by Dover, New York, 1955).

2. F. HarARY, The number of Linear, Directed, Rooted, and Connected Graphs, Trans.
Amer. Math. Soc. 78 (1955), 445—463.

3. R. C. ReaD, Euler Graphs on Labelled Nodes, Canad. J. Math. 14 (1962), 482-486.

4. R. C. READ, On the Number of Self-Complementary Graphs and Digraphs, J. London
Soc. 38 (1963), 99-104.



