login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002805 Denominators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.
(Formerly M1589 N0619)
360
1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 4084080, 77597520, 15519504, 5173168, 5173168, 118982864, 356948592, 8923714800, 8923714800, 80313433200, 80313433200, 2329089562800, 2329089562800, 72201776446800 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
H(n)/2 is the maximal distance that a stack of n cards can project beyond the edge of a table without toppling.
If n is not in {1, 2, 6} then a(n) has at least one prime factor other than 2 or 5. E.g., a(5) = 60 has a prime factor 3 and a(7) = 140 has a prime factor 7. This implies that every H(n) = A001008(n)/A002805(n), n not from {1, 2, 6}, has an infinite decimal representation. For a proof see the J. Havil reference. - Wolfdieter Lang, Jun 29 2007
a(n) = A213999(n,n-1). - Reinhard Zumkeller, Jul 03 2012
From Wolfdieter Lang, Apr 16 2015: (Start)
a(n)/A001008(n) = 1/H(n) is the solution of the following version of the classical cistern and pipes problem. A cistern is connected to n different pipes of water. For the k-th pipe it takes k time units (say, days) to fill the empty cistern, for k = 1, 2, ..., n. How long does it take for the n pipes together to fill the empty cistern? 1/H(n) gives the answer as a fraction of the time unit.
In general, if the k-th pipe needs d(k) days to fill the empty cistern then all pipes together need 1/Sum_{k=1..n} 1/d(k) = HM(d(1), ..., d(n))/n days, where HM denotes the harmonic mean HM. For the described problem, HM(1, 2, ..., n)/n = A102928(n)/(n*A175441(n)) = 1/H(n).
For a classical cistern and pipes problem see, e.g., the Hunger-Vogel reference (in Greek and German) given in A256101, problem 27, p. 29, where n = 3, and d(1), d(2) and d(3) are 6, 4 and 3 days. On p. 97 of this reference one finds remarks on the history of such problems (called in German 'Brunnenaufgabe'). (End)
From Wolfdieter Lang, Apr 17 2015: (Start)
An example of the above mentioned cistern and pipes problems appears in Chiu Chang Suan Shu (nine books on arithmetic) in book VI, problem 26. The numbers are there 1/2, 1, 5/2, 3 and 5 (days) and the result is 15/75 (day). See the reference (in German) on p. 68.
A historical account on such cistern problems is found in the Johannes Tropfke reference, given in A256101, section 4.2.1.2 Zisternenprobleme (Leistungsprobleme), pp. 578-579.
In Fibonacci's Liber Abaci such problems appear on p. 281 and p. 284 of L. E. Sigler's translation. (End)
All terms > 1 are even while corresponding numerators (A001008) are all odd (proof in Pólya and Szegő). - Bernard Schott, Dec 24 2021
REFERENCES
Chiu Chang Suan Shu, Neun Bücher arithmetischer Technik, translated and commented by Kurt Vogel, Ostwalds Klassiker der exakten Wissenschaften, Band 4, Friedr. Vieweg & Sohn, Braunschweig, 1968, p. 68.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
J. Havil, Gamma, (in German), Springer, 2007, p. 35-6; Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 281, 284.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kenny Lau, Table of n, a(n) for n = 1..2308 [First 200 terms computed by T. D. Noe]
Haight, Frank A., and Robert B. Jones., "A probabilistic treatment of qualitative data with special reference to word association tests." Journal of Mathematical Psychology 11.3 (1974): 237-244. [Annotated scanned copy]
Frank Haight and N. J. A. Sloane, Correspondence, 1975.
Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
Fredrik Johansson, How (not) to compute harmonic numbers, Feb 21 2009.
Peter Shiu, The denominators of harmonic numbers, arXiv:1607.02863 [math.NT], 2016.
Jonathan Sondow and Eric W. Weisstein, MathWorld: Harmonic Number.
Eric Weisstein's World of Mathematics, Book Stacking Problem.
Bing-Ling Wu, Yong-Gao Chen, On the denominators of harmonic numbers, arXiv:1711.00184 [math.NT], 2017.
FORMULA
a(n) = Denominator(Sum_{k=1..n} (2*k-1)/k). - Gary Detlefs, Jul 18 2011
a(n) = n! / gcd(Stirling1(n+1, 2), n!) = n! / gcd(A000254(n),n!). - Max Alekseyev, Mar 01 2018
a(n) = the (reduced) denominator of the continued fraction 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n-1)^2/(2*n-1))))). - Peter Bala, Feb 18 2024
EXAMPLE
H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ] = A001008/A002805.
MAPLE
seq(denom(sum((2*k-1)/k, k=1..n), n=1..30); # Gary Detlefs, Jul 18 2011
f:=n->denom(add(1/k, k=1..n)); # N. J. A. Sloane, Nov 15 2013
MATHEMATICA
Denominator[ Drop[ FoldList[ #1 + 1/#2 &, 0, Range[ 30 ] ], 1 ] ] (* Harvey P. Dale, Feb 09 2000 *)
Table[Denominator[HarmonicNumber[n]], {n, 1, 40}] (* Stefan Steinerberger, Apr 20 2006 *)
Denominator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
PROG
(PARI) a(n)=denominator(sum(k=2, n, 1/k)) \\ Charles R Greathouse IV, Feb 11 2011
(Haskell)
import Data.Ratio ((%), denominator)
a002805 = denominator . sum . map (1 %) . enumFromTo 1
a002805_list = map denominator $ scanl1 (+) $ map (1 %) [1..]
-- Reinhard Zumkeller, Jul 03 2012
(Sage)
def harmonic(a, b): # See the F. Johansson link.
if b - a == 1 : return 1, a
m = (a+b)//2
p, q = harmonic(a, m)
r, s = harmonic(m, b)
return p*s+q*r, q*s
def A002805(n) : H = harmonic(1, n+1); return denominator(H[0]/H[1])
[A002805(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
(Magma) [Denominator(HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Apr 16 2015
(GAP) List([1..30], n->DenominatorRat(Sum([1..n], i->1/i))); # Muniru A Asiru, Dec 20 2018
(Python)
from fractions import Fraction
def a(n): return sum(Fraction(1, i) for i in range(1, n+1)).denominator
print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Dec 24 2021
CROSSREFS
Cf. A001008 (numerators), A075135, A025529, A203810, A203811, A203812.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.
Sequence in context: A111936 A232090 A203811 * A231693 A232112 A117481
KEYWORD
nonn,easy,frac,nice
AUTHOR
EXTENSIONS
Definition edited by Daniel Forgues, May 19 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)