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1. In statistical mechanics, we usually deal with assemblies containing a fixed .
number of particles in which energy is the only conserved quantity. Recently, Fermi (1)
has shown that the angular distribution of the pions produced in high-energy nuclear
collisions can be explained if one takes into account the conservation of angular
momentum in addition to the conservation of energy. We are, therefore, led to discuss
the thermodynamical properties of assemblies characterized by the conservation of
two or more parameters. The simplest assumption of this t ype that we can make is that
there are two parameters, say E and P, which are conserved, and that each particle
of the assembly can occupy the levels (7, s) (r, s are non-negative integers), where the
contribution of the level (r,s) to £ is re; and to P is &g- In order to find the entropy,
and hence other thermodynamical properties of the system, we have to enumerate ths
distinct number of ways, p(m,n), in which an assembly of particles cor responding to
given values of I = mcgand P = ny, can be realized. In this paper we find asymptotic
expressions for p(im, n) in the following cases: (a) mis a fixed number, (b) m and n are of
the same order. It is assumed here that the number of particles is greater than m and a.
We deal with the case (@) in §2 and the case (b) in §4. §3 deals with the asymptotic
expansions of the generating funection for p(m,n) which are used in §4.

2. The partition function p(m,n) defined in §1 has also been studied previously by
MacMahon (5) as the number of partitions of the ‘bipartite’ number (m, z)*. We give
in the following table the values of p(m,n) for m,n up to 5. '

dary
Table for p(m,n) .
Y O 1 2 3 4 5
Ny o 2 3 s 7 7
1 v 2 4 7 12 19— TO S
2 L 4 9 16 29 41—— gy
3 3 7 16 31 57 97 e
4 ¥ 12 ¢
5 7 19

29 57 109 189 (W
47 - 97 189 33 =
As an illustration the nine partitions of the bipartite number (2, 2) are given belnw:

(2,2);(2,0),(0,2); (1, 1), (1,1); (2. 1), (0, 1); (1, 2), {1, 0); (2,0, (0, 1), (0, 1); (0,2}, (1,0),
(1,0); (1,0), (1, 1), (0,1); (1,0), (1,0), (0, 1), (0,1).
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* It may be noted that any bipartite partition of (m, n) can be represented by a matrix («,,) i
with (m+ 1) rows and (n + 1) columns, where &, 1s the number of times the swnmand (r, 5) oceurs f\\}(
/*f\

m 3 m n
in tho partition such that ¥ X 7a,, =m, and 3 3 sa,, = n.

r=0s=0 r=0s=10



C

fixed
mi (1)
1olear
gular
Scuss
on of
that
“ticle
= the
°PY,
= the
12 to
totic
re of
id 7.

otic

b y‘ :
Tive

"

qr:)
ars

— W ———
o

it . o

L upr—

i, | Wl sl

..-—n-m.—.-P-

i
On partitions of bipartite numbers 73

If one of the integers m is fixed, we can express p(m,n) in terms of the partition

functions p(r) of unipartite numbers. The generating function of p(m,n) is

Z(x,y) = X X plm,n)a"y"
B B 1

(1-2)(1-y) (1-22) (1 -zy) (1 =47 ..

= [T(1—a) 11 1T (1—gah)™ (1)

r=1 g=11t=0

The product converges for |z | <1, |y| < 1. Since (MacMahon (6))

1 '
(1—a)(1—az)(l—ax?) (1l —az®)...
a a? a?
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=l T 1— (=) (129 (1-2%

we can write the generating function Z in the form

Zeg) = TLA-2 11 (o)
r=1 s=1 \t=0
= ]I (l—x’)‘l(1+bly+bzy2+---), (2)
r=1
where
a,=1, a b a, = Ll = !
o= b YTy T (1-a)(1-a¥)’ BEA ) (1-ad) (12
and- b, = 2 @30 0y (m=0,1,2,...).
Zrar=m :

@
2}0 ay™. Now there are p(m) terms in b, and
the only term in b,, which has the maximum number of m factors is
1
(I—2)(L—2%...(1—am)’

a,, is the coefficient of y from the series

and therefore for |z | <1andm>3
! | pm)
S Sy e s B | R W Y

It follows that for x = e, A = o+l

b

1
™ ol Am
where A->0 in the Stolz angle |¢| <Ao (0<A <), provided m is a fixed positive

integer. In this case B exp (2/6A)
)l = 4
b IL (=27 Ly s (4)

{1+ 0 A}, ‘ (3)

Since p(m, n) is the coefficient of 2™ in the expansion of b,, [T (1 —")~", we can apply
' r=1

Ingham’s Tauberian Theorem (4) to (4), if we can prove that p(m, n) is an increasing

function of n for a fixed m. Now from (2) we have identically

p(m:n) = Zocm,rp(n—r)a (5)

r=

e e s e
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where the coefficients Cm,» 1€ positive functions of m and r only. It follows that p(m,n),
for a fixed m, is an increasing function of n. Thus we obtain finally for n—co and

e m,n) J(67) tol ex I'”T %)*] (6)

PO~ ) w7 s) |- :
3. We now obtain an asymptotic expansion for the generating function Z(z, ).

Substituting = = ¢, y = e~#in Z(x,y), we obtain for R(A) >0, R(x)> 0,

@ | © @ o—fsu ® 1 e—lrl
logZi=—-3% 2 log (1— eTASE) = BN S el — ¥ Y =37 i —
r=0s5=0 r=0s-0¢t—1 10 s=1t=1 ¢ raltml tl—€
r+5>0 r+s>0
©1 1 e el 1 1 1 1
= — . = —_ L
z§1 ter—1 +¢§1 te —1) (et — 1) Elt {e“—l Tt —1 +(e’/\~ 1) (et — 1)}
121 1 12101 §(3)+3§, 1 1}
TAS e LS e ] A4St —1 " eth )
H @
S TLTE) R Y N AL
4 \A ) St tle1 ) et Y iy
1/ 1 1\ 1/ 1 1\ _
Sl (P T 7
+4 (em_ t )+4 (e’“—l t,u),f ()

If A and g lie in the Stolz angles

Gio I [<ARWN) (0<A <o),

Gyt | S) | SAR(H) (O<A<c),
the series in (7) for Au log Z are uniformly convergent in any bounded portions of G
and Gy, so that we can take limits term by term and therefore we get the asymptotic
expression 16g Z ~ ¢(3)/ A, (8)
when A—0and x--0in @, and 4,.

We will obtain an asymptotic expansion for log Z for real positive values of A and

#, which is all that we require in §4 for evaluating p(m, n).

®1 1
Let U :t=1 '[26!# 1
du ® 1 g
Then = T A1
[ § g Te-+{,a
t=1r=11
= ¥ rlog(1 — e
r=1

Using a result of Wright (7) we obtain

d 3
- _%)_%Mgﬂ—g'(—])wwzx
s,

and therefore =T te/logpu—1)—pul'(— 1)+ 4,4 O(p2), (9)



