The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002544 a(n) = binomial(2*n+1,n)*(n+1)^2.
(Formerly M4855 N2075)
15

%I M4855 N2075 #125 Oct 18 2022 19:10:58

%S 1,12,90,560,3150,16632,84084,411840,1969110,9237800,42678636,

%T 194699232,878850700,3931426800,17450721000,76938289920,337206098790,

%U 1470171918600,6379820115900,27569305764000,118685861314020,509191949220240,2177742427450200,9287309860732800

%N a(n) = binomial(2*n+1,n)*(n+1)^2.

%C Coefficients for numerical differentiation.

%C Take the first n integers 1,2,3..n and find all combinations with repetitions allowed for the first n of them. Find the sum of each of these combinations to get this sequence. Example for 1 and 2: 1,2,1+1,1+2,2+2 gives sum of 12=a(2). - _J. M. Bergot_, Mar 08 2016

%C Let cos(x) = 1 -x^2/2 +x^4/4!-x^6/6!.. = Sum_i (-1)^i x^(2i)/(2i)! be the standard power series of the cosine, and y = 2*(1-cos(x)) = 4*sin^2(x/2) = x^2 -x^4/12 +x^6/360 ...= Sum_i 2*(-1)^(i+1) x^(2i)/(2i)! be a closely related series. Then this sequence represents the reversion x^2 = Sum_i 1/a(i) *y^(i+1). - _R. J. Mathar_, May 03 2022

%D C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.

%D J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A002544/b002544.txt">Table of n, a(n) for n=0..200</a>

%H W. G. Bickley and J. C. P. Miller, <a href="/A002551/a002551.pdf">Numerical differentiation near the limits of a difference table</a>, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]

%H Ömür Deveci and Anthony G. Shannon, <a href="https://doi.org/10.20948/mathmontis-2021-50-4">Some aspects of Neyman triangles and Delannoy arrays</a>, Mathematica Montisnigri (2021) Vol. L, 36-43.

%H C. Lanczos, <a href="/A002457/a002457.pdf">Applied Analysis</a> (Annotated scans of selected pages)

%H A. Petojevic and N. Dapic, <a href="http://www.mi.sanu.ac.rs/~gvm/radovi/AP-Budva.pdf">The vAm(a,b,c;z) function</a>, Preprint 2013.

%H H. E. Salzer, <a href="http://dx.doi.org/10.1002/sapm1943221115">Coefficients for numerical differentiation with central differences</a>, J. Math. Phys., 22 (1943), 115-135.

%H H. E. Salzer, <a href="/A002457/a002457_2.pdf">Coefficients for numerical differentiation with central differences</a>, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]

%H J. Ser, <a href="/A002720/a002720_4.pdf">Les Calculs Formels des Séries de Factorielles</a>, Gauthier-Villars, Paris, 1933 [Local copy].

%H J. Ser, <a href="/A002720/a002720.pdf">Les Calculs Formels des Séries de Factorielles</a> (Annotated scans of some selected pages)

%H R. Shenton and A. W. Kemp, <a href="https://doi.org/10.1016/0377-0427(89)90308-7">An S-fraction and ln^2(1+x)</a>, Journal of Computational and Applied Mathematics, 26 (1989) 367-370 North-Holland.

%H T. R. Van Oppolzer, <a href="http://www.archive.org/stream/lehrbuchzurbahnb02oppo#page/21/mode/1up">Lehrbuch zur Bahnbestimmung der Kometen und Planeten</a>, Vol. 2, Engelmann, Leipzig, 1880, p. 21.

%H Mats Vermeeren, <a href="http://arxiv.org/abs/1506.05288">A dynamical solution to the Basel problem</a>, arXiv preprint arXiv:1506.05288 [math.CA], 2015.

%F G.f.: (1 + 2x)/(1 - 4x)^(5/2).

%F a(n-1) = sum(i_1 + i_2 + ... + i_n) where the sum is over 0 <= i_1 <= i_2 <= ... <= i_n <= n; a(n) = (n+1)^2 C(2n+1, n). - _David Callan_, Nov 20 2003

%F a(n) = (n+1)^2 * binomial(2*n+2,n+1)/2. - _Zerinvary Lajos_, May 31 2006

%F Asymptotics: a(n)-> (1/64) * (128*n^2+176*n+41) * 4^n * n^(-1/2)/(sqrt(Pi)), for n->infinity. - _Karol A. Penson_, Aug 05 2013

%F G.f.: 2F1(3/2,2;1;4x). - _R. J. Mathar_, Aug 09 2015

%F a(n) = A002457(n)*(n+1). - _R. J. Mathar_, Aug 09 2015

%F a(n) = A000217(n)*A000984(n). - _J. M. Bergot_, Mar 10 2016

%F a(n-1) = A001791(n)*n*(n+1)/2. - _Anton Zakharov_, Jul 04 2016

%F From _Ilya Gutkovskiy_, Jul 04 2016: (Start)

%F E.g.f.: ((1 + 2*x)*(1 + 8*x)*BesselI(0,2*x) + 2*x*(3 + 8*x)*BesselI(1,2*x))*exp(2*x).

%F Sum_{n>=0} 1/a(n) = Pi^2/9 = A100044. (End)

%F From _Peter Bala_, Apr 18 2017: (Start)

%F With x = y^2/(1 + y) we have log^2(1 + y) = Sum_{n >= 0} (-1)^n*x^(n+1)/a(n). See Shenton and Kemp.

%F Series reversion ( Sum_{n >= 0} (-1)^n*x^(n+1)/a(n) ) = Sum_{n >= 1} 2*x^n/(2*n)! = Sum_{n >= 1} x^n/A002674(n). (End)

%F D-finite with recurrence n^2*a(n) -2*(n+1)*(2*n+1)*a(n-1)=0. - _R. J. Mathar_, Feb 08 2021

%F Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)^2 = A202543^2. - _Amiram Eldar_, May 14 2022

%p seq((n+1)^2*(binomial(2*n+2, n+1))/2, n=0..29); # _Zerinvary Lajos_, May 31 2006

%t Table[Binomial[2n+1,n](n+1)^2,{n,0,20}] (* _Harvey P. Dale_, Mar 23 2011 *)

%o (PARI) a(n)=binomial(2*n+1,n)*(n+1)^2

%o (PARI) x='x+O('x^99); Vec((1+2*x)/(1-4*x)^(5/2)) \\ _Altug Alkan_, Jul 09 2016

%o (Python)

%o from sympy import binomial

%o def a(n): return binomial(2*n + 1, n)*(n + 1)**2 # _Indranil Ghosh_, Apr 18 2017

%Y Cf. A085373, A002457, A002674, A202543.

%Y Equals A002736/2.

%Y A diagonal of A331430.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_, _Simon Plouffe_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 16:27 EDT 2024. Contains 372738 sequences. (Running on oeis4.)