Irrationality of the ζ Function on Odd Integers

Tanguy Rivoal
Institut de Mathématiques de Jussieu (France)

February 5, 2001
Summary by Marianne Durand

Abstract

The ζ function is defined by $\zeta(s)=\sum_{n} 1 / n^{s}$. This talk is a study of the irrationality of the zeta function on odd integer values >2.

1. Introduction

The sum $\sum_{n} 1 / n^{2}$ was first studied by Bernoulli, who proved around 1680 that it converged to a finite limit less than 2 . Euler proved in 1735 that it is equal to $\pi^{2} / 6$, and studied the more general function $\zeta(s)=\sum_{n} 1 / n^{s}$. He also showed that on even integers the ζ function has a closed form, namely $\zeta(2 n)=C_{n} \pi^{2 n}$ where the coefficients C_{n} are rational numbers that he wrote in terms of Bernoulli numbers. A century later Riemann studied this function on the whole complex plane, and he stated a conjecture on the location of the zeroes of the zeta function, that is known as the Riemann hypothesis, and is still unproved.

The first result on the irrationality of the ζ function on odd integers is due to Apéry, who proved in 1978 that $\zeta(3)$ is irrational [1]. Recently Tanguy Rivoal showed that the ζ function takes infinitely many irrational values on the odd integers [4,5], and that there exists an odd integer j with $5 \leq j \leq 21$ such that $\zeta(j)$ is irrational [5]. Zudilin [6] refined this result and proved it for $5 \leq j \leq 11$.

2. Irrationality of $\zeta(3)$

Theorem 1 (Apéry(1978)). The number $\zeta(3)$ is irrational.
The following proof is due to Nesterenko [3], after ideas by Beukers. The theorem is proved using the following generating function

$$
S_{n}(z)=\sum_{k=1}^{\infty} \frac{\partial}{\partial k}\left(\frac{(k-1)^{2}(k-2)^{2} \ldots(k-n)^{2}}{k^{2}(k+1)^{2} \ldots(k+n)^{2}}\right) z^{-k}
$$

The decomposition of the coefficient of z^{-k} in partial fractions gives the equality

$$
\begin{equation*}
S_{n}(z)=P_{0, n}(z)+P_{1, n}(z) \operatorname{Li}_{2}(1 / z)+P_{2, n}(z) \operatorname{Li}_{3}(1 / z) \tag{1}
\end{equation*}
$$

where $\operatorname{Li}_{s}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{s}}$ is a polylogarithm function, and $P_{k, n}$ are polynomials of degree n such that $P_{1, n}(1)=0$. When Equation (1) is specialized at $z=1$, it becomes

$$
S_{n}(1)=P_{0, n}(1)+P_{2, n}(1) \zeta(3),
$$

with the additionnal properties that $P_{2, n}(1) \in \mathbb{Z}$ and $d_{n}^{3} P_{0, n}(1) \in \mathbb{Z}$ where $d_{n}=\operatorname{ppcm}(1,2, \ldots, n)$.

The value $S_{n}(1)$ is bounded by using an integral representation.

$$
\begin{equation*}
S_{n}(1)=\frac{1}{2 i \pi} \int_{L}\left(\frac{\Gamma(n+1-s) \Gamma(s)^{2}}{\Gamma(n+1+s)}\right)^{2} d s \tag{2}
\end{equation*}
$$

where L is the vertical line $\Re(z)=c, \quad 0<c<n+1$, oriented from top to bottom. From this integral, the bounds $0<S_{n}(1) \leq c(\sqrt{2}-1)^{4 n}$ are obtained.

The inequalities $0<d_{n}^{3} P_{0, n}(1)+d_{n}^{3} P_{2, n}(1) \zeta(3)<c r^{n}$, where c is a constant, and $r<1$ prove that $\zeta(3)$ is irrational; because if $\zeta(3)$ is rational and equal to p / q, then $q d_{n}^{3} P_{0, n}(1)+q d_{n}^{3} P_{2, n}(1) \zeta(3)$ is an integer greater than 0 and bounded by $q c r^{n}$ that converges to 0 .

3. The ζ Function Has Infinitely Many Irrational Values on Odd Integers

Tanguy Rivoal in fact proved a stronger result, that is:
Theorem 2. Let a be an odd integer greater than 3 and $\delta(a)$ be the dimension of the \mathbb{Q}-vector space spanned by $1, \zeta(3), \ldots, \zeta(a)$, then

$$
\delta(a) \geq \frac{1}{3} \log a
$$

This implies directly that infinitely many $\zeta(2 n+1)$ are irrational.
To prove Theorem 2, we introduce the series

$$
S_{n, a, r}(z)=n!^{a-2 r} \sum_{k=1}^{\infty} \frac{(k-r n)_{r n}(k+n+1)_{r n}}{(k)_{n+1}^{a}} z^{-k}
$$

where $(k)_{n}=k(k+1) \ldots(k+n-1)$ is the Pochhammer symbol, and n, r, and a are integers satisfying $n \geq 0, \quad 1 \leq r<a / 2$, so that $S_{n, a, r}(z)$ exists when $|z| \geq 1$. As for the proof of the irrationality of $\zeta(3)$, an equality between the series studied and values of ζ is found, namely

$$
S_{n, a, r}(1)=P_{0, n}(1)+\sum_{l=2}^{a} P_{l, n}(1) \zeta(l)
$$

moreover, if $(n+1) a+l$ is odd then $P_{l, n}(1)=0$. For n odd and a odd greater than $3, P_{l, n}(1)=0$ if l is even, so that $S_{n, a, r}(1)$ is a linear combination of values of ζ on odd integers.

The dimension of the vector space spanned by $1, \zeta(3), \ldots, \zeta(a)$ is based on the following theorem:
Theorem 3 (Nesterenko's criterion). Let $\theta_{1}, \theta_{2}, \ldots, \theta_{N}$ be N real numbers, and suppose that there exist N sequences $\left(p_{l, n}\right)_{n \geq 0}$ such that

1. $\forall i=1, \ldots, N, \quad p_{l, n} \in \mathbb{Z}$;
2. $\alpha_{1}^{n+o(n)} \leq\left|\sum_{l=1}^{N} p_{l, n} \theta_{l}\right| \leq \alpha_{2}^{n+o(n)}$, with $0<\alpha_{1} \leq \alpha_{2}<1$;
3. $\forall l=1, \ldots, N,\left|p_{l, n}\right| \leq \beta^{n+o(n)}$ with $\beta>1$.

Then

$$
\operatorname{dim}_{\mathbb{Q}}\left(\mathbb{Q} \theta_{1}+\mathbb{Q} \theta_{2}+\cdots+\mathbb{Q} \theta_{N}\right) \geq \frac{\log (\beta)-\log \left(\alpha_{1}\right)}{\log (\beta)-\log \left(\alpha_{1}\right)+\log \left(\alpha_{2}\right)}
$$

This criterion, applied to the real numbers $\theta_{i}=\zeta(2 i+1), i \leq(a-1) / 2$, with the sequences $p_{l, n}$ defined by $p_{0, n}=d_{2 n}^{a} P_{0,2 n}(1)$ and $p_{l, n}=d_{2 n}^{a} P_{2 l+1,2 n}(1)$ if $1 \leq l \leq(a-1) / 2$ yields the inequality

$$
\begin{equation*}
\delta(a) \geq \frac{\log (r)+\frac{a-r}{a+1} \log (2)}{1+\log (2)+\frac{2 r+1}{a+1} \log (r+1)} \tag{3}
\end{equation*}
$$

for all $1 \leq r<a / 2$.

For each odd integer $a>1$, there exists an r (that can be made explicit) such that the inequality (3) reduces to $\delta(a) \geq \log (a) / 3$.

The proof of this property can be adapted to show that $\delta(169)>2$, which means that there exists an integer $j, \quad 5 \leq j \leq 169$, such that $1, \zeta(3)$, and $\zeta(j)$ are linearly independent over \mathbb{Q}.

4. At Least One Number Amongst $\zeta(5), \zeta(7), \ldots, \zeta(21)$ Is Irrational

The linear independence of $1, \zeta(3), \zeta(j)$ for some $j \leq 169$ implies the irrationality of $\zeta(j)$, but is stronger. The bound 169 is improved in this section by only seeking the irrationality.
Theorem 4. There exists an integer $j, 5 \leq j \leq 21$, such that $\zeta(j)$ is irrational.
The proof of this theorem follows the same directions as the two previous ones. First an adequate generating function $S_{n}(z)$ is considered, that gives a linear equation implying the zeta function on odd integers when specialized. The coefficients of this equation are studied, and their denominator bounded; a saddle-point method gives asymptotic results on $S_{n}(1)$. These lemmas, combined with the Nesterenko criterion finally give the result.

The generating function $S_{n}(z)$ is

$$
S_{n}(z)=n!^{a-6} \sum_{k=1}^{\infty} \frac{1}{2} \frac{d^{2}}{d k^{2}}\left(\left(k+\frac{n}{2}\right) \frac{(k-n)_{n}^{3}(k+n+1)_{n}^{3}}{(k)_{n+1}^{a}}\right) z^{-k},
$$

where a is an integer ≥ 6. This sum is convergent when $|z| \geq 1$. This sum is expanded in simple elements, and then specialized at $z=1$ to give a relation between values of ζ on odd integers, $\zeta(3)$ excluded, namely

$$
\begin{equation*}
S_{n}(1)=P_{0, n}(1)+\sum_{j=2}^{a / 2} j(2 j-1) P_{2 j-1, n}(1) \zeta(2 j+1) . \tag{4}
\end{equation*}
$$

The coefficients $P_{l, n}$ satisfy $2 d_{n}^{a+2} P_{0, n}(1) \in \mathbb{Z}$ and $2 d_{n}^{a-l} P_{l, n}(1) \in \mathbb{Z}$ for $1 \leq l \leq a$.
The next step of the proof is to get an asymptotic result on $S_{n}(1)$, using a saddle-point method. We do not know of any integral representation similar to (2) for $S_{n}(1)$, but we can express $S_{n}(1)$ as the real part of a complex integral. First we introduce $R_{n}(k)$,

$$
R_{n}(k)=n!^{a-6}\left(k+\frac{n}{2}\right) \frac{(k-n)_{n}^{3}(k+n+1)_{n}^{3}}{(k)_{n+1}^{a}} .
$$

So that $S_{n}(z)=\sum_{k=1}^{\infty} \frac{1}{2} \frac{d^{2}}{d k^{2}} R_{n}(k) z^{-k}$. We also define

$$
J_{n}(u)=\frac{n}{2 i \pi} \int_{L} R_{n}(n z)\left(\frac{\pi}{\sin (n \pi z)}\right)^{3} e^{n u z} d z
$$

where L is a vertical line from $i \infty$ to $-i \infty$ with a real part between 0 and 1 . With those notations, the property $S_{n}(1)=\Re\left(J_{n}(i \pi)\right)$ holds.

The quantity $J_{n}(i \pi)$ is rewritten in terms of the Γ function, using the complement formula $\Gamma(t) \Gamma(1-t)=\pi / \sin (\pi t)$, and is then approximated using the Stirling formula. This gives

$$
J_{n}(i \pi)=\left(i(-1)^{n+1}(2 \pi)^{a / 2-1} n^{2-a / 2} \int_{L} g(z) e^{n w(z)} d z\right)(1+O(1 / n))
$$

where $g(z)=(z+1 / 2) \frac{\sqrt{1-z}^{3} \sqrt{2+z}^{3}}{\sqrt{z}^{a+3} \sqrt{z+1}^{a+3}}$ and $w(z)=(a+3) z \log (z)-(a+3)(z+1) \log (z+1)+$ $3(1-z) \log (1-z)+3(z+2) \log (z+2)+i \pi z$. The variable a is now specialized to 20 in order to have a relation between $\zeta(5), \ldots, \zeta(21)$. The saddle-point method, see [2, pp. 279-285], now
applies to the point z_{0}, the only root of $w^{\prime}(z)=0$ such that $0<\Re(z)<1$. The numerical value of z_{0} is $0.992-0.012 i$. The estimation of $J_{n}(i \pi)$ obtained is

$$
J_{n}(i \pi)=u_{n} r(-1)^{n+1} n^{-8} e^{n w\left(z_{0}\right)+i \beta}
$$

with r and β real constants and u_{n} a sequence of complex numbers converging to 1 . We define $v_{0}=\Im\left(w\left(z_{0}\right)\right)$. The real part of this expression is

$$
r(-1)^{n+1} n^{-8} e^{\Re\left(n w\left(z_{0}\right)\right)}\left(\Re\left(u_{n}\right) \cos \left(n v_{0}+\beta\right)-\Im\left(u_{n}\right) \sin \left(n v_{0}+\beta\right)\right) .
$$

Since $v_{0} \sim 3.104$ is not a multiple of π, there exists an increasing sequence $\phi(n)$ such that $\cos \left(\phi(n) v_{0}+\beta\right)$ tends to a limit $l \neq 0$. As a direct consequence

$$
\lim _{n \rightarrow \infty} \Re J_{\phi(n)}(i \pi)=K(-1)^{\phi(n)+1} \phi(n)^{-8} e^{\Re\left(\phi(n) w\left(z_{0}\right)\right)},
$$

where K is a constant. So $\lim _{n \rightarrow \infty}\left|S_{\phi(n)}(1)\right|^{1 / \phi(n)}=e^{\Re\left(w\left(z_{0}\right)\right)}$.
This result, combined with Equation (4) proves Theorem 4 as follows. Equation (4) tells that $l_{n}=2 d_{n}^{22} S_{n}(1)$ is a linear combination of $\zeta(5), \ldots, \zeta(21)$ with integer coefficients. The paragraph above shows that l_{n} satisfies $\lim _{n \rightarrow \infty}\left|l_{\phi(n)}\right|^{1 / \phi(n)} \in(0,1)$. So one of the values $\zeta(5), \ldots, \zeta(21)$ is irrational.

This result has been refined by Zudilin [6], who proved that at least one of the four numbers $\zeta(5), \zeta(7), \zeta(9)$, and $\zeta(11)$ is irrational, by using a general hypergeometric construction of linear forms in odd zeta values.

Bibliography

[1] Apéry (Roger). - Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque, vol. 61, 1979, pp. 11-13.
[2] Dieudonné (Jean). - Calcul infinitésimal. - Hermann, Paris, 1980. 479 pages.
[3] Nesterenko (Yu. V.). - Some remarks on $\zeta(3)$. Mathematical Notes, vol. 59, n ${ }^{\circ}$ 5-6, 1996, pp. 625-636.
[4] Rivoal (Tanguy). - La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. Comptes Rendus de l'Académie des Sciences. Série I, vol. 331, n ${ }^{\circ} 4$, 2000, pp. 267-270.
[5] Rivoal (Tanguy). - Structures discrètes et analyse diophantienne. - Thèse, Université de Caen, June 2001.
[6] Zudilin (V. V.). - One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational. Russian Mathematical Surveys, vol. 56, n ${ }^{\circ} 4$, 2001, pp. 774-776.

