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1   Introduction

1

0

    One way to derive Mercator's series  for the natural logarithm function starts from the integral 

expression

 (1.1)                   log(1 ) .
1

Expanding the integrand as a Taylor series i

x
x dt

xt
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n  and integrating term by term yields Mercator's 

expansion

                            log(1 ) =  .
2 3

We can get more rapidly converging series  for log(1 ) by a simple modification of the 

t

x x
x x
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above approach; the idea is to rewrite the integrand in (1.1) before carrying out the expansion 

and term by term integration. 

     The quadratic polynomial  1 (1 ) in  vanishes when 
1

x
t t t t
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1
,  and hence is 

divisble by the linear polynomial 1  in . It follows that the quotient

1 (1 )
1                  (1 ),

1 1
a linear polynomial in . We can thus write the integrand of 
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t t xx x xt
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(1.1) in the form
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Integrating both sides between 0 and 1 gives
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0

The integrals in the series can be evaluated making use of  the beta function result

! !
(1.2)              B( 1, 1)  (1 )   ,

( 1)!

where  and  are nonnegative integers. After a short c

p q p q
p q t t dt

p q

p q
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alculation we obtain the expansion

2 1
                           log(1 ) ( 1) ,

21

which converges provided 4.
1

      More generally, if  and  are nonnegative integer
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,

s we can write the integrand of (1.1) 

in the form

( )
 (1.3)                          ,

1 1 ( ) (1 )

where ( ) is a polynomial in  (with coefficients rational functions in )
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Integrating both sides of (1.3 ) between 0 and 1 gives
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   The integrals can be evaluated using (1.2) to produce a series expansion for l

m n
m n

m n

k mk nk
m n m n

k

P t
dt

R x t t

R x P t t t dt




       

  



 

og(1 ). Some examples 

of these expansions for small values of  and  are listed in the next section.
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2

   Once we have these new expansions for the logarithmic function log(1 ) we can obtain new 

sin ( )
series expansions for the inverse tangent function tan ( ) and the functions  and sin ( )

1
by 

x

x
x x

x
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means of the relations

 (1.4)                        tan ( )  log(1 ) log(1 ) ,
2

sin ( ) 1
(1.5)                           tan ,

1 1 1

and

sin (
(1.6)                     sin ( )   

i
x ix ix
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x x x

t
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Some examples are listed in Section 4.

   It turns out that the expansions we obtain by this method for the functions  sin ( )  and

sin ( )
   are in fact power series in , and hence m

1

x
dt

t

x

x
x

x











ust be just the usual Maclaurin expansions 

for these functions in a disguised form. Nevertheless, these equivalent expansions are useful for 

finding new series for the constants , (2), (3), (4) an    d Catalan's constant G. Some examples 

of these new representations for these constants may be  found in Sections 5 through  9.
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2   Series expansions for log(1+x)

1

2 2

1

2 1

1

1

(2 )
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3   Series for log(2)
We can obtain an endless supply of rapidly converging series for log(2) by specialising these

generalised expansions for log(1+ ). Here are some typical results:

( 1)3(3.1)          log(2) 4 (2
2 (2 1)
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(3.3)      log(2) ( 1)  
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1 28 17 1
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0

2

0

3 2

1 34 25 1
(3.9)      log(2) ( 1)  

412 18
(4 1)(4 3)

2

1 2800 3680 1123 1
(3.10)      log(2) ( 1)  

(6 )!(2 )!108 162(6 1)(6 3)(6 5)
(4 )!(3 )! !

1 156128 291728 171
(3.11)     log(2)
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0

658 31441 1
8 324

(8 1)(8 3)(8 5)(8 7)
4

1 361944 672036 391770 70743 1
(3.12) log(2) ( 1)

(8 )!(3 )!972 1458(8 1)(8 3)(8 5)(8 7)
(6 )!(4 )! !

The first 10 terms of this last ser
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ies gives a value for log(2) which is correct in the first 46 

decimal places.
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4   Series for inverse trigonometric functions
2

1
2 2

2 2 2
1

2 2 2

0
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0

1 4
(4.1)               tan   (Euler)

2(1 ) 1
(2 1)

4 (1 2 ) 3 5 4
(4.2)              t an   

4(1 ) 1
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3
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1
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(4.7)               (sin )   (Euler)

22

sin (2 )
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Inverse sine
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(2 (2 1))
2

sin 8 (1 ) 2(1 2 )
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41 2 (2 1)
2
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6
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where P( , ) 648 (1 ) 324 (2 3 4 )

                       18 (11 24 52 ) 6 (3 8 48 ) 32

sin P( , )
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61 (3 (3 1)(3 2))
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5   A collection of results relating to π

4 4

2

1

1

0

22 1
(5.1)           240  

7 (4 1)(4 2)(4 3)(4 5)(4 6)(4 7)

This is a series companion formula to the integral result of Dalzell,

22 (1 )
(5.2)            .

7 1

Dalzell, D. P. "On 

n n n n n n n

x x
dx
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π

7

22/7." .  . . 19, 133-134, 1944.

If we expand the integrand in (5.2) into a series and integrate term by term we obtain  the 

alternating series

22 ( 1)
(5.3)          24

7 (2 1)(2 2)(2

n

J London Math Soc
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It is also interesting to note that
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3 2
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10 6 1
(5.5)                    

3  2
(3 1)(3 2)
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A list of series for π derived from the new inverse tangent and inverse 
sine function expansions
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5 2
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2
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4
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2

7 6
(5.10)                  4
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(6 1)(6 5)
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114 11
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4 33
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6   Results for ζ(2)

2

2 2 2

1

1

1 1 1
(2) .

1 2 3 6

Here are a variety of formulas for (2)

ln( ) ln( )
(6.1)                        (2) lim

(6.2)                        (2

 Recall

                           :

.

n

n k

n k

n k











 

   




 





As a limit



1

( )
) lim ,

( )
nn

k

np n

k p n k









where p(n) counts the number of partitions of n - sequence A000041 in Sloane's Online 
Encyclopedia of Integer Sequences.

1
(6.3)                      (2) ( ) ( ) ( )

0

where the notation  denotes the tower of powers 

(
(6.4)                               (2)  1 + 2

cb

x x x x x x dx

a b c a





     

  






As an integral

.

An interesting series







1

2 2 4

1

1
(6.5)                                           

1)

(1 )

Maple can evaluate this sum but can't evaluate the companion result for Napier's constant 

1
2 2 4!(1 )

 .
n

n

n

n n n

e
n n n










 

 




.

1 11707 1783

0

2

In celebration of Euler's tercentenary we offer the amusing

4
(6.6)                           (2) tan (tan (tan (tan ( ))))

3
x dx



   

Leonhard Euler (1707 - 1783)

http://www.research.att.com/~njas/sequences/A000041
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2
1 2

2

2

2

1

1

1 1 (2 )
Putting   in the expansion  (sin )   results in the well-known series  

22 2

1
                                    (2)    3

26

   

  

 . 

n

n

n

x
x x

n
n

n

n
n

n












 
 
 
 

 
 
 
 





Further series for ζ(2)

1 2Using the new representations for (sin )  given in this website produces an infinite sequence 

of faster and faster converging series for (2), which continues with

(6.7)                              

x





2 2
(1)

2

2 4 3 2

2

2

1

1

20 8 1
   3 (see Mohammed ,  Example 4)

46
(2 (2 1))

2

1701 1944 729 96 4
(6.8)                                 3

66
(3 (3 1)(3 2))

3

87040
(6.9)     12

6

 ,  

 ,

n

n

n n
n

n n
n

n n n n
n

n n n
n

n















 


 
  

 

   


 
   

 







6 5 4 3 2

21

173568 131968 47456 8084 552 9
8

(4 (4 1)(4 2)(4 3))
4

 ,

                                                    
           

n

n n n n n
n

n n n n
n





     
 

    
 



.
                                         .
                                                    .

(1) Mohamud Mohammed Infinite families of accelerated series for some classical 
constants by the Markov–WZ Method  Discrete Mathematics and Theoretical 
Computer Science 7, 2005, 11-24

http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/issue/view/53
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/issue/view/53
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7   Series for ζ(3)

-1 2

-1 21
2

0

Making use of the Taylor series expansion for (sin ( ))  given in (4.7), the integral 

representation

(sin h ( ))
(7.1)                               (3) 10

[L.Lewin  

x

t
dt

t

Polylogarithms and associat

  

1

31

, North-Holland, New York, 1981, Sec. 6.3]

is easily seen to be equivalent to the series

5 ( 1)
 (7.2)  (3)  (Hjortnaes 1954).

22

Using the new s

                             
n

n

ed  functions

n
n

n









 
 
 



-1 2

3 2

31

eries expansions for (sin ( ))  provides further results of this type. Examples 

include 

5 24 4 6 1
(7.3) (3)  

42
(2 (2 1))

2

(7.4)

                        

                          

, 
n

x

n n n
n

n n
n






  


 
  

 



6 5 4 3 2
1

3

3

1

1

5 9477 11421 5265 1701 558 108 8
(3)  ( 1) ,

62
(3 (3 1)(3 2))

3

and

( )
(7.5)  (3)  20

8
(4 (4 1)(4 2)(4 3))

4

where

               P(

                        ,  

n

n

n

n n n n n n
n

n n n
n

P n
n

n n n n
n














     
 

 
   

 


 

    
 





9 8 7 6 5

4 3 2

) 1671168 4161536 4278272 2340864 712064

                                98496 6360 4476 594 27.

               

n n n n n n

n n n n
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8   Series for ζ(4)

4

1

1

1

1 2
sin ( / 2) log ( )

20
1 ( / 2)

Comtet's result

36 1
(8.1)                       (4)  

217

follows from the identity

144
(8.2)                         (4)  

17

sin ( / 2)
by  replacing 

1 (

n

x x
dx

x

n
n

n

x

x
















 
 
 









2

1

2

 with its Maclaurin series and integrating term by term. If we
/ 2)

sin ( )
use the equivalent expansions for ,  some of which are listed in section (4), we can 

1
extend Comtet's result to

(8.3)       

x

x





4 3 2

4

4

8 7

1

1

36 80 48 24 8 1
                   (4)  

417
(2 (2 1))

2

36 P( )
(8.4)                          (4)  

617
(3 (3 1)(3 2))

3

                where P( ) 137781 275562

 ,
n

n

n n n n
n

n n
n

n
n

n n n
n

n n n













   


 
  

 


 

   
 

  





6 5

4 3 2

240570 122472

                                             41877 10908 2232 288 16,

and so on

               
.

n n

n n n n
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9   Series for Catalan’s constant

   The Dirichlet  function is defined as

1 1 1 1
 (9.1)                           ( )       where  Re   1.

1 3 5 7

It is an example of an L-series. The values (1),  (3),  (5),   of the Dirichlet

s s s s
s s





  


     



2 1*

*

function at the positive odd integers are rational multiples of powers of .

Explicitly

E
 (9.2)                    (2 1)

2(2 )! 2

where E  is an Euler number (secant number). The first few

n

n

n

n
n






    
 

*

 values are

                          n  0   1   2      3         4            5 

                         E 1  1   5 61 1385 50521 (Sloane's A000364).

   Little is known about the values of (2

n





           

2 2 2

) at the positive even integers. (2) is known

as Catalan's constant and denoted by G (sometimes K).

1 1 1
 (9.3)                               1 0.91596 55941 77219 01505 .

3 5 7

Unlike (3), it i

n

G





      

s not known if  is irrational.G
   

   D. M Bradley in “Representations of Catalan’s Constant” catalogues and proves a large 
number of infinite series and integral representations for G. In particular we have the 
integral formula (entry (34) in Bradley)

1

1

6

0

1 3

8 4

1 3

8 4

(9.4)                                     log(2 3) .
sin( )

Make the change of variable sin ( ) in the integral to give

sin ( )
(9.5)                                    log(2 3)

x
G dx

x

x y

y
G

y











  



  



2

1
2

0
.

1
dy

y

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1879
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1 2

1

2

2 1

1

1

8

Now replace sin ( ) / 1  by its Taylor series expansion

sin (2 )
                          

21

and integrate term by term to obtain

(9.6)                                 

n

n

y y

y y
ny n

n

G 



  






 
 
 



    

2

3

8 0

1
log(2 3)  ; (entry (62) in Bradley).

2
(2 1)

Because of the fast convergence of the series, this representation for  has been used to 

calculate Catalan's contant to a large number of d

n
n

n
n

G




 

 
  

 



1 2

ecimal places. 

   If in (9.5) we use the new series expansions for sin ( ) / 1  given in this website we 

find new representations for Catalan's constant:

y y 

2

2 2

4 3 2

2 2

1 3

8 16 0

1 3

8 32

40 54 19
(9.7)                                 log(2 3)

4
(4 1) (4 3)
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and so on.
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   Bradley (entry (4) in the above reference) also gives the integral representation
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which produces the poorly converging series 
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in (9.10) leads to the representation
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