login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002067 a(n) = Sum_{k=0..n-1} binomial(2*n,2*k)*a(k)*a(n-k-1).
(Formerly M4458 N1889)
8
1, 1, 7, 127, 4369, 243649, 20036983, 2280356863, 343141433761, 65967241200001, 15773461423793767, 4591227123230945407, 1598351733247609852849, 655782249799531714375489, 313160404864973852338669783, 172201668512657346455126457343, 108026349476762041127839800617281 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of increasing rooted triangular cacti of 2n+1 nodes. (In an increasing rooted graph, nodes are numbered and numbers increase as you move away from the root.)
a(n) is (2n)!/2^n times the n-th coefficient in the series for inverf(2x/sqrt(Pi)). - Paul Barry, Apr 12 2010
Number of ordered bilabeled increasing trees with 2n labels. - Markus Kuba, Nov 17 2014
Limit_{n->oo} (a(n)/(n!)^2)^(1/n) = 8/Pi. - Vaclav Kotesovec, Nov 19 2014
From David Callan, Jul 21 2017: (Start)
Conjectures:
a(n) is the Hafnian of the triangular array (u(i,j))_{1 <= i < j <= 2n} with u(i,j)=i. The Hafnian is the same as the Pfaffian except without the alternating signs just as the permanent of a matrix is the determinant without the signs.
a(n) is the total weight of Dyck n-paths with weight defined as follows. Given a Dyck path, for each upstep, record its position in the path and the height of its upper endpoint; then multiply together all of these positions and heights. For example, the Dyck 4-path P = UUDUUDDD has upsteps in positions 1,2,4,5 ending at heights 1,2,2,3 respectively, and hence weight(P) = 480. (In fact the positions determine the heights because, for the k-th upstep, position + height = 2k.) (End)
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, cf. Chapter 5.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470. [See Eq. 1.3 and Section 6.]
D. Dominici, Asymptotic analysis of the derivatives of the inverse error function, arXiv:math/0607230 [math.CA], 2006-2007.
A. J. E. M. Janssen, Analysis of a constrained initial value for an ODE arising in the study of a power-flow model, Eindhoven Univ. Tech. (Netherlands, 2023).
Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
Wikipedia, Error Function
FORMULA
a(n) = b(2n+1), where e.g.f. of b satisfies B'(x)=exp(B(x)^2/2).
a(n) = (2n)! * A092676(n) / (2^n*A092677(n)). - Paul Barry, Apr 12 2010
a(n) = 1/2^n * A026944(n+1). Let D denote the operator g(x) -> (1/sqrt(2))*d/dx(exp(x^2)*g(x)). Then a(n) = D^(2*n)(1) evaluated at x = 0. - Peter Bala, Sep 08 2011
E.g.f. B(x)=Sum_{n>=1} a(n-1)*x^(2*n)/(2*n)! satisfies differential equation B''(x) - B(x)*B''(x) - 1 = 0, B'(0)=1/2. - Vladimir Kruchinin, Aug 12 2019
E.g.f. satisfies: A(x) = exp( Integral A(x) * Integral A(x) dx dx ), where A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! and the constant of integration is zero. - Paul D. Hanna, Jun 02 2015
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + 7*x^4/4! + 127*x^6/6! + 4369*x^8/8! + ...
MAPLE
a:=proc(n) option remember; if n <= 0 then RETURN(1); else RETURN( add( binomial(2*n, 2*k)*a(k)*a(n-k-1), k=0..n-1 ) ); fi; end;
MATHEMATICA
max = 16; se = Series[ InverseErf[ 2*x/Sqrt[Pi] ], {x, 0, 2*max+1} ]; a[n_] := (2n+1)!/2^n*Coefficient[ se, x, 2*n+1]; Table[ a[n], {n, 0, max} ] (* Jean-François Alcover, Mar 07 2012, after Paul Barry *)
PROG
(PARI) /* E.g.f. A(x) = exp( Integral A(x) * Integral A(x) dx dx ): */
{a(n) = local(A=1+x); for(i=1, n, A = exp( intformal( A * intformal( A + x*O(x^n)) ) ) ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(2*n), ", ")) \\ Paul D. Hanna, Jun 02 2015
(PARI) /* By definition: */
{a(n) = if(n==0, 1, sum(k=0, n-1, binomial(2*n, 2*k)*a(k)*a(n-k-1)))}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 02 2015
CROSSREFS
The sequence of fractions A092676/A132467 is closely related.
Periods: A122149, A122159.
Sequence in context: A363870 A215066 A092676 * A274571 A336502 A138523
KEYWORD
nonn,eigen,easy,nice
AUTHOR
EXTENSIONS
Alternate description, formula and comment from Christian G. Bower
New definition and more terms from Vladeta Jovovic, Oct 22 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 4 00:44 EDT 2024. Contains 372225 sequences. (Running on oeis4.)