The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002057 Fourth convolution of Catalan numbers: a(n) = 4*binomial(2*n+3,n)/(n+4).
(Formerly M3483 N1415)
67

%I M3483 N1415 #261 Jan 17 2024 04:33:35

%S 1,4,14,48,165,572,2002,7072,25194,90440,326876,1188640,4345965,

%T 15967980,58929450,218349120,811985790,3029594040,11338026180,

%U 42550029600,160094486370,603784920024,2282138106804,8643460269248,32798844771700,124680849918352

%N Fourth convolution of Catalan numbers: a(n) = 4*binomial(2*n+3,n)/(n+4).

%C a(n) is sum of the (flattened) list obtained by the iteration of: replace each integer k with the list 0,...,k+1 on the starting value 0. Length of this list is Catalan(n) or A000108. - _Wouter Meeussen_, Nov 11 2001

%C a(n-2) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 3 (cf. _Zoran Sunic_ reference). - _Benoit Cloitre_, Oct 07 2003

%C Number of standard tableaux of shape (n+2,n-1). - _Emeric Deutsch_, May 30 2004

%C a(n) = CatalanNumber(n+3) - 2*CatalanNumber(n+2). Proof. From its definition as a convolution of Catalan numbers, a(n) counts lists of 4 Dyck paths of total size (semilength) = n. Connect the 4 paths by 3 upsteps (U) and append 3 downsteps (D). This is a reversible procedure. So a(n) is also the number of Dyck (n+3)-paths that end DDD (D for downstep). Let C(n) denote CatalanNumber(n) (A000108). Since C(n+3) is the total number of Dyck (n+3)-paths and C(n+2) is the number that end UD, we have (*) C(n+3) - C(n+2) is the number of Dyck (n+3)-paths that end DD. Also, (**) C(n+2) is the number of Dyck (n+3)-paths that end UDD (change the last D in a Dyck (n+2)-path to UDD). Subtracting (**) from (*) yields a(n) = C(n+3) - 2C(n+2) as claimed. - _David Callan_, Nov 21 2006

%C Convolution square of the Catalan sequence without one of the initial "1"'s: (1 + 4x + 14x^2 + 48x^3 + ...) = (1/x^2) * square(x + 2x^2 + 5x^3 + 14x^4 + ...)

%C a(n) is the number of binary trees with n+3 internal nodes in which both subtrees of the root are nonempty. Cf. A068875 [Sedgewick and Flajolet]. - _Geoffrey Critzer_, Jan 05 2013

%C With offset 4, a(n) is the number of permutations on {1,2,...,n} that are 123-avoiding, i.e., do not contain a three-term monotone subsequence, for which the first ascent is at positions (4,5); for example, there are 48 123-avoiding permutations on n=7 for which the first ascent is at spots (4,5). See Connolly link. There it is shown in general that the k-th Catalan Convolution is the number of 123-avoiding permutations for which the first ascent is at (k, k+1). (For n=k, the first ascent is defined to be at positions (k,k+1) if the permutation is the decreasing permutation with no ascents.) - _Anant Godbole_, Jan 17 2014

%C With offset 4, a(n) is the number of permutations on {1,2,...,n} that are 123-avoiding and for which the integer n is in the 4th spot; see Connolly link. - _Anant Godbole_, Jan 17 2014

%C a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that have exactly one east step below the subdiagonal y = x-1. Details can be found in Section 3.1 in Pan and Remmel's link. - _Ran Pan_, Feb 04 2016

%C a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that bounce off the diagonal y = x to the right exactly once but do not bounce off y = x to the left. Details can be found in Section 4.2 in Pan and Remmel's link. - _Ran Pan_, Feb 04 2016

%C a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that horizontally cross the diagonal y = x exactly once but do not cross the diagonal vertically. Details can be found in Section 4.3 in Pan and Remmel's link. - _Ran Pan_, Feb 04 2016

%C Apparently also Young tableaux of (non-partition) shape [n+1, 1, 1, n+1], see example file. - _Joerg Arndt_, Dec 30 2023

%D Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 11, coefficients of P_4(z).

%D C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.

%D Robert Sedgewick and Phillipe Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 225.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe and Fung Lam, <a href="/A002057/b002057.txt">Table of n, a(n) for n = 0..1000</a> (first 100 terms were computed by T. D. Noe)

%H Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, <a href="https://arxiv.org/abs/2301.09765">Enumeration of multi-rooted plane trees</a>, arXiv:2301.09765 [math.CO], 2023.

%H Joerg Arndt, <a href="/A002057/a002057.txt">The a(3)=48 Young tableaux for shape [4,1,1,4]</a>.

%H Andrei Asinowski and Cyril Banderier, <a href="https://arxiv.org/abs/2401.05558">From geometry to generating functions: rectangulations and permutations</a>, arXiv:2401.05558 [cs.DM], 2024. See page 2.

%H Jean-Luc Baril and Helmut Prodinger, <a href="https://arxiv.org/abs/2205.01383">Enumeration of partial Lukasiewicz paths</a>, arXiv:2205.01383 [math.CO], 2022.

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.

%H Julia E. Bergner, Cedric Harper, Ryan Keller, and Mathilde Rosi-Marshall, <a href="https://arxiv.org/abs/1807.03005">Action graphs, planar rooted forests, and self-convolutions of the Catalan numbers</a>, arXiv:1807.03005 [math.CO], 2018.

%H Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, <a href="https://arxiv.org/abs/1707.09918">Bounce statistics for rational lattice paths</a>, arXiv:1707.09918 [math.CO], 2017, p. 9.

%H A. Cayley, <a href="http://dx.doi.org/10.1112/plms/s1-22.1.237">On the partitions of a polygon</a>, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.

%H Giulio Cerbai, Anders Claesson, and Luca Ferrari, <a href="https://arxiv.org/abs/1907.08142">Stack sorting with restricted stacks</a>, arXiv:1907.08142 [cs.DS], 2019.

%H Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, <a href="http://arxiv.org/abs/1410.1249">Mutation effects in ordered trees</a>, arXiv preprint arXiv:1410.1249 [math.CO], 2014 (see page 4).

%H Samuel Connolly, Zachary Gabor, and Anant Godbole, <a href="http://arxiv.org/abs/1401.2691"> The location of the first ascent in a 123-avoiding permutation</a>, arXiv:1401.2691 [math.CO], 2014.

%H S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, <a href="http://dx.doi.org/10.1021/ci00026a012">Enumeration of polyene hydrocarbons: a complete mathematical solution</a>, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995) pp. 743-751.

%H S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, <a href="/A002057/a002057.pdf">Enumeration of polyene hydrocarbons: a complete mathematical solution</a>, J. Chem. Inf. Comput. Sci., Vol. 35, No. 4 (1995) pp. 743-751. [Annotated scanned copy]

%H Harold M. Edwards, <a href="https://doi.org/10.1090/S0273-0979-07-01153-6">A Normal Form for Elliptic Curves</a>, Bulletin of the A.M.S., Vol. 44, No. 3 (2007), pp. 393-422.

%H Richard K. Guy, <a href="/A005555/a005555.pdf">Letter to N. J. A. Sloane, May 1990</a>

%H Richard K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, Sandsteps and Pascal Pyramids</a>, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.

%H V. E. Hoggatt, Jr., <a href="/A005676/a005676.pdf">7-page typed letter to N. J. A. Sloane with suggestions for new sequences</a>, circa 1977.

%H V. E. Hoggatt, Jr. and M. Bicknell, <a href="http://www.fq.math.ca/Scanned/14-5/hoggatt1.pdf">Catalan and related sequences arising from inverses of Pascal's triangle matrices</a>, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.

%H C. Krishnamachary and M. Bheemasena Rao, <a href="/A000108/a000108_10.pdf">Determinants whose elements are Eulerian, prepared Bernoullian and other numbers</a>, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146. [Annotated scanned copy]

%H Wolfdieter Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart., Vol. 38, No. 5 (2000), pp. 408-419. See Eq.(3).

%H Kyu-Hwan Lee and Se-jin Oh, <a href="http://arxiv.org/abs/1601.06685">Catalan triangle numbers and binomial coefficients</a>, arXiv:1601.06685 [math.CO], 2016.

%H Nik Lygeros and Olivier Rozier, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Lygeros/lygeros5.html">A new solution to the equation tau(rho) == 0 (mod p)</a>, J. Int. Seq., Vol. 13 (2010), Article 10.7.4.

%H Ran Pan and Jeffrey B. Remmel, <a href="http://arxiv.org/abs/1601.07988">Paired patterns in lattice paths</a>, arXiv:1601.07988 [math.CO], 2016.

%H John Riordan, <a href="/A000262/a000262_1.pdf">Letter to N. J. A. Sloane, Nov 10 1970</a>.

%H John Riordan, <a href="/A000254/a000254.pdf">Letter of 04/11/74</a>.

%H L. W. Shapiro, <a href="http://dx.doi.org/10.1016/0012-365X(76)90009-1">A Catalan triangle</a>, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90.

%H L. W. Shapiro, <a href="/A003517/a003517.pdf">A Catalan triangle</a>, Discrete Math., Vol. 14, No. 1 (1976), pp. 83-90. [Annotated scanned copy]

%H Zoran Sunic, <a href="https://doi.org/10.37236/1745">Self describing sequences and the Catalan family tree</a>, Elect. J. Combin., Vol. 10 (2003), Article N5.

%H Murray Tannock, <a href="https://skemman.is/bitstream/1946/25589/1/msc-tannock-2016.pdf">Equivalence classes of mesh patterns with a dominating pattern</a>, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.

%H Steven J. Tedford, <a href="http://www.emis.de/journals/INTEGERS/papers/l3/l3.Abstract.html">Combinatorial interpretations of convolutions of the Catalan numbers</a>, Integers, Vol. 11 (2011), Article A3.

%H Wen-Jin Woan, Lou Shapiro, and D. G. Rogers, <a href="http://www.jstor.org/stable/2974473">The Catalan numbers, the Lebesgue integral and 4^{n-2}</a>, Amer. Math. Monthly, Vol. 104, No. 10 (1997), pp. 926-931.

%F a(n) = A033184(n+4, 4) = 4*binomial(2*n+3, n)/(n+4) = 2*(n+1)*A000108(n+2)/(n+4).

%F G.f.: c(x)^4 with c(x) g.f. of A000108 (Catalan).

%F Row sums of A145596. Column 4 of A033184. By specializing the identities for the row polynomials given in A145596 we obtain the results a(n) = Sum_{k = 0..n} (-1)^k*binomial(n+1,k+1)*a(k)*4^(n-k) and a(n) = Sum_{k = 0..floor(n/2)} binomial(n+1,2*k+1) * Catalan(k+1) * 2^(n-2*k). From the latter identity we can derive the congruences a(2n+1) == 0 (mod 4) and a(2n) == Catalan(n+1) (mod 4). It follows that a(n) is odd if and only if n = (2^m - 4) for some m >= 2. - _Peter Bala_, Oct 14 2008

%F Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=3, a(n-3) = (-1)^(n-3) * coeff(charpoly(A,x), x^3). - _Milan Janjic_, Jul 08 2010

%F G.f.: (1-sqrt(1-4*x) + 2*x*(-2+sqrt(1-4*x) + x))/(2*x^4). - _Harvey P. Dale_, May 05 2011

%F a(n+1) = A214292(2*n+4,n). - _Reinhard Zumkeller_, Jul 12 2012

%F D-finite with recurrence: (n+4)a(n) = 8*(2*n-1)*a(n-3) - 20*(n+1)*a(n-2) + 4*(2*n+5)*a(n-1). - _Fung Lam_, Jan 29 2014

%F D-finite with recurrence: (n+4)*a(n) - 2*(3*n+7)*a(n-1) + 4*(2*n+1)*a(n-2) = 0. - _R. J. Mathar_, Jun 03 2014

%F Asymptotics: a(n) ~ 4^(n+3)/sqrt(4*Pi*n^3). - _Fung Lam_, Mar 31 2014

%F a(n) = 32*4^n*Gamma(5/2+n)*(1+n)/(sqrt(Pi)*Gamma(5+n)). - _Peter Luschny_, Dec 14 2015

%F a(n) = C(n+1) - 2*C(n) where C is Catalan number A000108. _Yuchun Ji_, Oct 18 2017 [Note: Offset is off by 2]

%F E.g.f.: d/dx ( 2*exp(2*x)*BesselI(2,2*x)/x ). - _Ilya Gutkovskiy_, Nov 01 2017

%F From _Bradley Klee_, Mar 05 2018: (Start)

%F With F(x) = 16/(1+sqrt(1-4*x))^4 g.f. of A002057, xi(x) = F(x/4)*(x/4)^2, K(16*x) = 2F1(1/2,1/2;1;16*x) g.f. of A002894, q(x) g.f. of A005797, and q'(x) g.f. of A274344:

%F K(x) = (1+sqrt(xi(x)))*K(xi(x)).

%F 2*K(1-x) = (1+sqrt(xi(x)))*K(1-xi(x)).

%F q(x) = sqrt(q(xi(16*x)/16)) = q'(xi(16*x)/16)/sqrt(xi(16*x)/16). (End)

%F From _Amiram Eldar_, Jan 02 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 5/4 + Pi/(18*sqrt(3)).

%F Sum_{n>=0} (-1)^n/a(n) = 183*log(phi)/(25*sqrt(5)) - 77/100, where phi is the golden ratio (A001622). (End)

%F a(n) = Integral_{x=0..4} x^n*W(x) dx where W(x) = -x^(3/2)*(1 - x/2)*sqrt(4 - x)/Pi, defined on the open interval (0,4). - _Karol A. Penson_, Nov 13 2022

%e From _Peter Bala_, Apr 14 2017: (Start)

%e This sequence appears on the main diagonal of a generalized Catalan triangle. Construct a lower triangular array (T(n,k)), n,k >= 0 by placing the sequence [0,0,0,1,1,1,1,...] in the first column and then filling in the remaining entries in the array using the rule T(n,k) = T(n,k-1) + T(n-1,k). The resulting array begins

%e n\k| 0 1 2 3 4 5 6 7 ...

%e ---+-------------------------------

%e 0 | 0

%e 1 | 0 0

%e 2 | 0 0 0

%e 3 | 1 1 1 1

%e 4 | 1 2 3 4 4

%e 5 | 1 3 6 10 14 14

%e 6 | 1 4 10 20 34 48 48

%e 7 | 1 5 15 35 69 117 165 165

%e ...

%e (see Tedford 2011; this is essentially the array C_4(n,k) in the notation of Lee and Oh). Compare with A279004. (End)

%p a := n -> 32*4^n*GAMMA(5/2+n)*(1+n)/(sqrt(Pi)*GAMMA(5+n)):

%p seq(a(n),n=0..23); # _Peter Luschny_, Dec 14 2015

%p A002057List := proc(m) local A, P, n; A := [1]; P := [1,1,1];

%p for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);

%p A := [op(A), P[-1]] od; A end: A002057List(27); # _Peter Luschny_, Mar 26 2022

%t Table[Plus@@Flatten[Nest[ #/.a_Integer:> Range[0, a+1]&, {0}, n]], {n, 0, 10}]

%t Table[4 Binomial[2n+3,n]/(n+4),{n,0,30}] (* or *) CoefficientList[ Series[ (1-Sqrt[1-4 x]+2 x (-2+Sqrt[1-4 x]+x))/(2 x^4),{x,0,30}],x] (* _Harvey P. Dale_, May 05 2011 *)

%o (PARI) {a(n) = if( n<0, 0, n+=2; 2*binomial(2*n, n-2) / n)}; /* _Michael Somos_, Jul 31 2005 */

%o (PARI) x='x+O('x^100); Vec((1-(1-4*x)^(1/2)+2*x*(-2+(1-4*x)^(1/2)+x))/(2*x^4)) \\ _Altug Alkan_, Dec 14 2015

%o (Magma) [4*Binomial(2*n+3,n)/(n+4): n in [0..30]]; // _Vincenzo Librandi_, Feb 04 2016 *)

%o (GAP) List([0..25],n->4*Binomial(2*n+3,n)/(n+4)); # _Muniru A Asiru_, Mar 05 2018

%o (SageMath) [2*(n+1)*catalan_number(n+2)/(n+4) for n in (0..30)] # _G. C. Greubel_, May 27 2022

%Y T(n, n+4) for n=0, 1, 2, ..., array T as in A047072. Also a diagonal of A059365 and of A009766.

%Y Cf. A001003.

%Y A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

%Y Cf. A000108, A000245, A000344, A003517, A000588, A003518, A003519, A001392, A001622.

%Y Cf. A145596 (row sums), A279004.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 05:56 EDT 2024. Contains 372549 sequences. (Running on oeis4.)