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We prove the supercongruence A002003(p) ≡ A002003(1)
(
mod p3

)
holds

for prime p ≥ 5.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The terms of A002003 are de�ned by means of the binomial sum

a(n) = 2

n−1∑
k=0

(
n− 1

k

)(
n+ k

k

)
. (1)

Seiichi Manyama contributed the alternative representation

a(n) = [xn]

(
1 + x

1− x

)n

. (2)

Expanding the binomials in (2) and extracting the coe�cient of xn leads to a
second representation for a(n) as a binomial sum:

a(n) =

n∑
k=0

(
n

k

)(
2n− k − 1

n− 1

)
. (3)

We can verify (3) (and hence also (2)) by using Zeilberger's algorithm to show
that the de�ning sum (1) and the sum (3) satisfy the same linear recurrence,
namely,

4(3n2 − 6n+ 2)a(n− 1)− (n− 2)(2n− 1)a(n− 2)− n(2n− 3)a(n) = 0.

Both sums have the same initial values, thus con�rming Manyama's
observation (2).

Supercongruences Given an integer sequence s(n), there exists a formal
power series G(x) = 1 + g1x+ g2x

2 + · · · , with rational coe�cients, such that

s(n) = [xn]G(x)n for n ≥ 1. (4)

G(x) is given by

G(x) =
x

Rev (xE(x))
, (5)

where Rev denotes the series reversion (inversion) operator and the power

series E(x) = exp

∑
n≥1

s(n)
xn

n

. See [Stan'99, Exercise 5.56 (a), p. 98, and

its solution on p. 146 ] or [Bal'15].
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We can invert (5) to express E(x) in terms of G(x):

E(x) =
1

x
Rev

(
x

G(x)

)
. (6)

A simple consequence of (5) and (6) is the following:

the power series G(x) is integral ⇐⇒ the power series E(x) is integral

Given a sequence s(n), the condition that the power series E(x) =

exp

∑
n≥1

s(n)
xn

n

 is integral is known to be equivalent to the statement that

the Gauss congruences

s
(
mpk

)
≡ s

(
mpk−1

) (
mod pk

)
hold for all prime p and positive integers m, k [Stan'99, Ex. 5.2 (a), p. 72, and
its solution on p. 104]. It therefore follows from Manyama's observation (2)
that the sequence a(n) = A002003(n) satis�es the Gauss congruences. In fact,
calculation suggests that A002003 satis�es stronger supercongruences. Here is
a particular case.

Proposition 1. The supercongruence a(p) ≡ a(1)
(
mod p3

)
holds for prime

p ≥ 5.

Proof. We rewrite the binomial sum representation (3) for a(p) by separating
out the �rst (k = 0) summand and last (k = p) summand and adding together
the k-th and (p− k)-th summands for 1 ≤ k ≤ p−1

2 to obtain

a(p) =

(
2p− 1

p− 1

)
+ 1 +

p−1
2∑

k=1

(
p

k

)((
2p− k − 1

p− 1

)
+

(
p+ k − 1

p− 1

))
.

Now by Wolstenholme's theorem [Mes'11, p. 3](
2p− 1

p− 1

)
+ 1 ≡ 2

(
mod p3

)
.

Hence

a(p) ≡ 2 +

p−1
2∑

k=1

(
p

k

)((
2p− k − 1

p− 1

)
+

(
p+ k − 1

p− 1

)) (
mod p3

)
. (7)

To establish the Proposition we will show that each summand on the right
side of (7) is divisible by p3. Clearly, the �rst factor

(
p
k

)
in each summand is

divisible by p for k in the range of summation. Therefore, to prove the
Proposition, it is enough to show that the second factor

(
2p−k−1

p−1

)
+
(
p+k−1
p−1

)
is

always divisible by p2. To show this, we write the second factor as a product of
two terms each of which is divisible by p.
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One easily checks that(
2p− k − 1

p− 1

)
+

(
p+ k − 1

p− 1

)
=

{
(p+ k − 1)!

k!(p− 1)!(p− k)!

}{
k!(2p− k − 1)!

(p+ k − 1)!
+ (p− k)!

}
.

(8)
The �rst factor on the right side of (8) is a rational number whose numerator
is divisible by p since k ≥ 1. Clearly, for k in the range 1...p−1

2 , the prime p
cannot be a factor of the denominator. To show that the second factor on the
right side of (8) is also divisible by p we �rst set r = p− 2k ≥ 1. Then we have

k!(2p− k − 1)!

(p+ k − 1)!
+ (p− k)! = k!(2p− k − 1)(2p− k − 2) · · · (2p− k − r) + (p− k)!

≡ (−1)rk!(k + 1)(k + 2) · · · (k + r) + (p− k)! ( mod p )

≡ −(k + r)! + (p− k)! ( mod p )

≡ −(p− k)! + (p− k)! ( mod p )

≡ 0 ( mod p ).

We have shown that
(
2p−k−1

p−1

)
+
(
p+k−1
p−1

)
is divisible by p2 for 1 ≤ k ≤ p−1

2 ,
thus completing the proof of the Proposition.�

Conjecture. We conjecture that the more general supercongruences

a
(
mpk

)
≡ a

(
mpk−1

) (
mod p3k

)
(9)

hold for prime p ≥ 5 and all positive integers m and k.

Calculation suggests that the above approach of adding pairs of terms to get
divisibility by powers of the prime p might extend to proving the general case.

A generalisation. We de�ne a two parameter family of sequences a(r,s)(n) by

a(r,s)(n) = [xrn]

(
1 + x

1− x

)sn

r ∈ N, s ∈ Z. (10)

In particular, a(1,1)(n) = A002003(n). Expanding the binomials in (10) and
extracting the coe�cient of xn leads to the formula

a(r,s)(n) =

sn∑
k=0

(
sn

k

)(
(r + s)n− k − 1

sn− 1

)
n ≥ 1. (11)

We conjecture that the supercongruences

a(r,s)
(
mpk

)
≡ a(r,s)

(
mpk−1

) (
mod p3k

)
(12)

hold for all prime p ≥ 5 and r ∈ N and s ∈ Z.
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Another member of the family of sequences a(r,s)(n), already in the

database, is a(2,1)(n) =
1
2a(1,2)(n) = A103885(n). Using the same method as

in Proposition 1, one can show that A103885(p) ≡ A103885(1)
(
mod p3

)
holds

for prime p ≥ 5. We remark that A103885(n) = [xn]S(x)n where S(x) =
1
xRev

(
x(1+x)
1−x

)
is the o.g.f. of the sequence of large Schröder numbers

A006318.

Table of values a(r,s)(n)

r = 1

n = 1 2 3 4 5 6 7
s = 1 2 8 38 192 1002 5336 28814
s = 2 4 32 292 2816 28004 284000 2919620
s = 3 6 72 978 14016 207006 3116952 47568618
s = 4 8 128 2312 44032 864008 17282432 350353928
s = 5 10 200 4510 107200 2625010 65520920 1657410310

r = 2

n = 1 2 3 4 5 6 7
s = 1 2 16 146 1408 14002 142000 1459810
s = 2 8 192 5336 157184 4780008 148321344 4666890936
s = 3 18 912 53154 3281280 209070018 13591279920 895903147122
s = 4 32 2816 284000 30316544 3339504032 375282559232 42760427177696
s = 5 50 6800 1057730 174074240 29557550050 5119703270960 899105953178770
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