# A supercongruence for A002003 

Peter Bala, March 2020

We prove the supercongruence $\mathrm{A} 002003(p) \equiv \mathrm{A} 002003(1)\left(\bmod p^{3}\right)$ holds for prime $p \geq 5$.

The terms of A002003 are defined by means of the binomial sum

$$
\begin{equation*}
a(n)=2 \sum_{k=0}^{n-1}\binom{n-1}{k}\binom{n+k}{k} \tag{1}
\end{equation*}
$$

Seiichi Manyama contributed the alternative representation

$$
\begin{equation*}
a(n)=\left[x^{n}\right]\left(\frac{1+x}{1-x}\right)^{n} . \tag{2}
\end{equation*}
$$

Expanding the binomials in (2) and extracting the coefficient of $x^{n}$ leads to a second representation for $a(n)$ as a binomial sum:

$$
\begin{equation*}
a(n)=\sum_{k=0}^{n}\binom{n}{k}\binom{2 n-k-1}{n-1} . \tag{3}
\end{equation*}
$$

We can verify (3) (and hence also (2)) by using Zeilberger's algorithm to show that the defining sum (1) and the sum (3) satisfy the same linear recurrence, namely,

$$
4\left(3 n^{2}-6 n+2\right) a(n-1)-(n-2)(2 n-1) a(n-2)-n(2 n-3) a(n)=0
$$

Both sums have the same initial values, thus confirming Manyama's observation (2).

Supercongruences Given an integer sequence $s(n)$, there exists a formal power series $G(x)=1+g_{1} x+g_{2} x^{2}+\cdots$, with rational coefficients, such that

$$
\begin{equation*}
s(n)=\left[x^{n}\right] G(x)^{n} \quad \text { for } n \geq 1 \tag{4}
\end{equation*}
$$

$G(x)$ is given by

$$
\begin{equation*}
G(x)=\frac{x}{\operatorname{Rev}(x E(x))}, \tag{5}
\end{equation*}
$$

where Rev denotes the series reversion (inversion) operator and the power series $E(x)=\exp \left(\sum_{n \geq 1} s(n) \frac{x^{n}}{n}\right)$. See [Stan'99, Exercise 5.56 (a), p. 98, and its solution on p. 146] or [Bal'15].

We can invert (5) to express $E(x)$ in terms of $G(x)$ :

$$
\begin{equation*}
E(x)=\frac{1}{x} \operatorname{Rev}\left(\frac{x}{G(x)}\right) . \tag{6}
\end{equation*}
$$

A simple consequence of (5) and (6) is the following:
the power series $G(x)$ is integral $\Longleftrightarrow$ the power series $E(x)$ is integral
Given a sequence $s(n)$, the condition that the power series $E(x)=$ $\exp \left(\sum_{n \geq 1} s(n) \frac{x^{n}}{n}\right)$ is integral is known to be equivalent to the statement that the Gauss congruences

$$
s\left(m p^{k}\right) \equiv s\left(m p^{k-1}\right)\left(\bmod p^{k}\right)
$$

hold for all prime $p$ and positive integers $m, k$ [Stan'99, Ex. 5.2 (a), p. 72, and its solution on p. 104]. It therefore follows from Manyama's observation (2) that the sequence $a(n)=\mathrm{A} 002003(n)$ satisfies the Gauss congruences. In fact, calculation suggests that A002003 satisfies stronger supercongruences. Here is a particular case.

Proposition 1. The supercongruence $a(p) \equiv a(1)\left(\bmod p^{3}\right)$ holds for prime $p \geq 5$.

Proof. We rewrite the binomial sum representation (3) for $a(p)$ by separating out the first $(k=0)$ summand and last $(k=p)$ summand and adding together the $k$-th and $(p-k)$-th summands for $1 \leq k \leq \frac{p-1}{2}$ to obtain

$$
a(p)=\binom{2 p-1}{p-1}+1+\sum_{k=1}^{\frac{p-1}{2}}\binom{p}{k}\left(\binom{2 p-k-1}{p-1}+\binom{p+k-1}{p-1}\right) .
$$

Now by Wolstenholme's theorem [Mes'11, p. 3]

$$
\binom{2 p-1}{p-1}+1 \equiv 2\left(\bmod p^{3}\right)
$$

Hence

$$
\begin{equation*}
a(p) \equiv 2+\sum_{k=1}^{\frac{p-1}{2}}\binom{p}{k}\left(\binom{2 p-k-1}{p-1}+\binom{p+k-1}{p-1}\right)\left(\bmod p^{3}\right) \tag{7}
\end{equation*}
$$

To establish the Proposition we will show that each summand on the right side of (7) is divisible by $p^{3}$. Clearly, the first factor $\binom{p}{k}$ in each summand is divisible by $p$ for $k$ in the range of summation. Therefore, to prove the Proposition, it is enough to show that the second factor $\binom{2 p-k-1}{p-1}+\binom{p+k-1}{p-1}$ is always divisible by $p^{2}$. To show this, we write the second factor as a product of two terms each of which is divisible by $p$.

One easily checks that

$$
\begin{equation*}
\binom{2 p-k-1}{p-1}+\binom{p+k-1}{p-1}=\left\{\frac{(p+k-1)!}{k!(p-1)!(p-k)!}\right\}\left\{\frac{k!(2 p-k-1)!}{(p+k-1)!}+(p-k)!\right\} \tag{8}
\end{equation*}
$$

The first factor on the right side of (8) is a rational number whose numerator is divisible by $p$ since $k \geq 1$. Clearly, for $k$ in the range $1 \ldots \frac{p-1}{2}$, the prime $p$ cannot be a factor of the denominator. To show that the second factor on the right side of (8) is also divisible by $p$ we first set $r=p-2 k \geq 1$. Then we have

$$
\begin{aligned}
\frac{k!(2 p-k-1)!}{(p+k-1)!}+(p-k)! & =k!(2 p-k-1)(2 p-k-2) \cdots(2 p-k-r)+(p-k)! \\
& \equiv(-1)^{r} k!(k+1)(k+2) \cdots(k+r)+(p-k)!(\bmod p) \\
& \equiv-(k+r)!+(p-k)!(\bmod p) \\
& \equiv-(p-k)!+(p-k)!(\bmod p) \\
& \equiv 0(\bmod p) .
\end{aligned}
$$

We have shown that $\binom{2 p-k-1}{p-1}+\binom{p+k-1}{p-1}$ is divisible by $p^{2}$ for $1 \leq k \leq \frac{p-1}{2}$, thus completing the proof of the Proposition.

Conjecture. We conjecture that the more general supercongruences

$$
\begin{equation*}
a\left(m p^{k}\right) \equiv a\left(m p^{k-1}\right)\left(\bmod p^{3 k}\right) \tag{9}
\end{equation*}
$$

hold for prime $p \geq 5$ and all positive integers $m$ and $k$.

Calculation suggests that the above approach of adding pairs of terms to get divisibility by powers of the prime $p$ might extend to proving the general case.

A generalisation. We define a two parameter family of sequences $a_{(r, s)}(n)$ by

$$
\begin{equation*}
a_{(r, s)}(n)=\left[x^{r n}\right]\left(\frac{1+x}{1-x}\right)^{s n} \quad r \in \mathbb{N}, s \in \mathbb{Z} \tag{10}
\end{equation*}
$$

In particular, $a_{(1,1)}(n)=\mathrm{A} 002003(n)$. Expanding the binomials in (10) and extracting the coefficient of $x^{n}$ leads to the formula

$$
\begin{equation*}
a_{(r, s)}(n)=\sum_{k=0}^{s n}\binom{s n}{k}\binom{(r+s) n-k-1}{s n-1} \quad n \geq 1 . \tag{11}
\end{equation*}
$$

We conjecture that the supercongruences

$$
\begin{equation*}
a_{(r, s)}\left(m p^{k}\right) \equiv a_{(r, s)}\left(m p^{k-1}\right)\left(\bmod p^{3 k}\right) \tag{12}
\end{equation*}
$$

hold for all prime $p \geq 5$ and $r \in \mathbb{N}$ and $s \in \mathbb{Z}$.

Another member of the family of sequences $a_{(r, s)}(n)$, already in the database, is $a_{(2,1)}(n)=\frac{1}{2} a_{(1,2)}(n)=\operatorname{A103885}(n)$. Using the same method as in Proposition 1, one can show that $\overline{\mathrm{A} 103885(p) \equiv \mathrm{A} 103885(1)\left(\bmod p^{3}\right) \text { holds } .}$ for prime $p \geq 5$. We remark that $\mathrm{A} 103885(n)=\left[x^{n}\right] S(x)^{n}$ where $S(x)=$ $\frac{1}{x} \operatorname{Rev}\left(\frac{x(1+x)}{1-x}\right)$ is the o.g.f. of the sequence of large Schröder numbers A006318.

Table of values $a_{(r, s)}(n)$
$\mathbf{r}=\mathbf{1}$

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n=1$ | 2 | 3 | 4 | 5 | 6 | 7 |
| $s=1$ | 2 | 8 | 38 | 192 | 1002 | 5336 | 28814 |
| $s=2$ | 4 | 32 | 292 | 2816 | 28004 | 284000 | 2919620 |
| $s=3$ | 6 | 72 | 978 | 14016 | 207006 | 3116952 | 47568618 |
| $s=4$ | 8 | 128 | 2312 | 44032 | 864008 | 17282432 | 350353928 |
| $s=5$ | 10 | 200 | 4510 | 107200 | 2625010 | 65520920 | 1657410310 |

$$
\mathbf{r}=\mathbf{2}
$$

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n=1$ | 2 | 3 | 4 | 5 | 6 | 7 |  |
| $s=1$ | 2 | 16 | 146 | 1408 | 14002 | 142000 | 1459810 |  |
| $s=2$ | 8 | 192 | 5336 | 157184 | 4780008 | 148321344 | 4666890936 |  |
| $s=3$ | 18 | 912 | 53154 | 3281280 | 209070018 | 13591279920 | 895903147122 |  |
| $s=4$ | 32 | 2816 | 284000 | 30316544 | 3339504032 | 375282559232 | 42760427177696 |  |
| $s=5$ | 50 | 6800 | 1057730 | 174074240 | 29557550050 | 5119703270960 | 899105953178770 |  |

## References

[Bal'15] Representing a sequence as $[\mathrm{x} \hat{\{ }\} \mathrm{n}] \mathrm{G}(\mathrm{x}) \hat{\{ }\} \mathrm{n}$, uploaded to A066398
[Mes'11] R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
[Stan'99] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999

