login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001590 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=0.
(Formerly M0784 N0296)
129
0, 1, 0, 1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778, 1431, 2632, 4841, 8904, 16377, 30122, 55403, 101902, 187427, 344732, 634061, 1166220, 2145013, 3945294, 7256527, 13346834, 24548655, 45152016, 83047505, 152748176, 280947697, 516743378, 950439251 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Dimensions of the homogeneous components of the higher order peak algebra associated to cubic roots of unity (Hilbert series = 1 + 1*t + 2*t^2 + 3*t^3 + 6*t^4 + 11*t^5 ...). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 22 2006
Starting with offset 3: (1, 2, 3, 6, 11, 10, 37, ...) = row sums of triangle A145579. - Gary W. Adamson, Oct 13 2008
Starting (1, 2, 3, 6, 11, ...) = INVERT transform of the periodic sequence (1, 1, 0, 1, 1, 0, 1, 1, 0, ...). - Gary W. Adamson, May 04 2009
The comment of May 04 2009 is equivalent to: The numbers of ordered compositions of n using integers that are not multiples of 3 is equal to a(n+2) for n>=1, see [Hoggatt-Bicknell (1975) eq (2.7)]. - Gary W. Adamson, May 13 2013
Primes in the sequence are 2, 3, 11, 37, 634061, 7256527, ... in A231574. - R. J. Mathar, Aug 09 2012
Pisano period lengths: 1, 2, 13, 8, 31, 26, 48, 16, 39, 62,110,104,168, 48,403, 32, 96, 78, 360, 248, ... . - R. J. Mathar, Aug 10 2012
a(n+1) is the top left entry of the n-th power of any of 3 X 3 matrices [0, 1, 0; 1, 1, 1; 1, 0, 0], [0, 1, 1; 1, 1, 0; 0, 1, 0], [0, 1, 1; 0, 0, 1; 1, 0, 1] or [0, 0, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n+3) equals the number of n-length binary words avoiding runs of zeros of lengths 3i+2, (i=0,1,2,...). - Milan Janjic, Feb 26 2015
Sums of pairs of successive terms of A000073. - N. J. A. Sloane, Oct 30 2016
The power Q^n, for n >= 0, of the tribonacci Q-matrix Q = matrix([1, 1, 1], [1, 0, 0], [0, 1, 0]) is, by the Cayley-Hamilton theorem, Q^n = matrix([a(n+2), a(n+1) + a(n), a(n+1)], [a(n+1), a(n) + a(n-1), a(n)], [a(n), a(n-1) + a(n-2), a(n-1)], with a(-2) = -1 and a(-1) = 1. One can use a(n) = a(n-1) + a(n-2) + a(n-3) in order to obtain a(-1) and a(-2). - Wolfdieter Lang, Aug 13 2018
a(n+2) is the number of entries n, for n>=1, in the sequence {A278038(k)}_{k>=1} (without A278038(0) = 1). - Wolfdieter Lang, Sep 11 2018
In terms of the tribonacci numbers T(n) = A000073(n) the nonnegative powers of the Q-matrix (from the Aug 13 2018 comment) are Q^n = T(n)*Q^2 + (T(n-1) + T(n-2))*Q + T(n-1)*1_3, for n >= 0, with T(-1) = 1, T(-2) = -1. This is equivalent to the powers t^n of the tribonacci constant t = A058255 (or also for powers of the complex solutions). - Wolfdieter Lang, Oct 24 2018
REFERENCES
Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Barry Balof, Restricted tilings and bijections, J. Integer Seq. 15 (2012), no. 2, Article 12.2.3, 17 pp.
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
M. Feinberg, Fibonacci-Tribonacci, Fib. Quart. 1(3) (1963), 71-74.
M. Feinberg, New slants, Fib. Quart. 2 (1964), 223-227.
W. Florek, A class of generalized Tribonacci sequences applied to counting problems, Appl. Math. Comput., 338 (2018), 809-821.
P. Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), Article 16.8.2.
V. E. Hoggatt, Jr, Marjorie Bicknell, Palindromic compositions, Fib. Quart 13 (4) (1975) 357, eq (2.7)
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 9.
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
Tamara Kogan, L. Sapir, A. Sapir, A. Sapir, The Fibonacci family of iterative processes for solving nonlinear equations, Applied Numerical Mathematics 110 (2016) 148-158.
D. Krob and J.-Y. Thibon, Higher order peak algebras, arXiv:math/0411407 [math.CO], 2004.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Sepideh Maleki, Martin Burtscher, Automatic Hierarchical Parallelization of Linear Recurrences, Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems, ACM, 2018.
M. A. Nyblom, Counting Palindromic Binary Strings Without r-Runs of Ones, J. Int. Seq. 16 (2013) #13.8.7.
H. Prodinger, Counting Palindromes According to r-Runs of Ones Using Generating Functions, J. Int. Seq. 17 (2014) # 14.6.2, even length, r=2.
Neville Robbins, On Tribonacci Numbers and 3-Regular Compositions, Fibonacci Quart. 52 (2014), no. 1, 16-19. See Adamson's comments.
Bo Tan and Zhi-Ying Wen, Some properties of the Tribonacci sequence, European Journal of Combinatorics, 28 (2007) 1703-1719.
M. E. Waddill and L. Sacks, Another generalized Fibonacci sequence, Fib. Quart., 5 (1967), 209-222.
Eric Weisstein's World of Mathematics, Tribonacci Number
FORMULA
G.f.: x*(1-x)/(1-x-x^2-x^3).
Limit a(n)/a(n-1) = t where t is the real solution of t^3 = 1 + t + t^2, t = A058265 = 1.839286755... . If T(n) = A000073(n) then t^n = T(n-1) + a(n)*t + T(n)*t^2, for n >= 0, with T(-1) = 1.
a(3*n) = Sum_{k+l+m=n} (n!/k!l!m!)*a(l+2*m). Example: a(12)=a(8)+4a(7)+10a(6)+16a(5)+19a(4)+16a(3)+10a(2)+4a(1)+a(0) The coefficients are the trinomial coefficients. T(n) and T(n-1) also satisfy this equation. (T(-1)=1)
From Reinhard Zumkeller, May 22 2006: (Start)
a(n) = A000073(n+1)-A000073(n);
a(n) = A000073(n-1)+A000073(n-2) for n>1;
A000213(n-2) = a(n+1)-a(n) for n>1. (End)
a(n) + a(n+1) = A000213(n). - Philippe Deléham, Sep 25 2006
If p[1]=0, p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n+1)=det A. - Milan Janjic, May 02 2010
For n>=4, a(n)=2*a(n-1)-a(n-4). - Bob Selcoe, Feb 18 2014
a(-1-n) = -A078046(n). - Michael Somos, Jun 01 2014
EXAMPLE
a(12)=a(11)+a(10)+a(9): 230=125+68+37.
For n=5 the partitions of 5 are 1+1+1+1+1 (1 composition), 1+1+1+2 (4 compositions), 1+2+2 (3 compositions), 1+1+3 (not contrib because 3 is a part), 2+3 (no contrib because 3 is a part), 1+4 (2 compositions) and 5 (1 composition), total 1+4+3+2+1=11 =a(5+2) - R. J. Mathar, Jan 13 2023
MAPLE
seq(coeff(series(x*(1-x)/(1-x-x^2-x^3), x, n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 24 2018
MATHEMATICA
LinearRecurrence[{1, 1, 1}, {0, 1, 0}, 50] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
RecurrenceTable[{a[0]==0, a[1]==1, a[2]==0, a[n]==a[n-1]+a[n-2]+a[n-3]}, a, {n, 40}] (* Vincenzo Librandi, Apr 19 2018 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n*[0; 1; 0])[1, 1] \\ Charles R Greathouse IV, Jul 28 2015
(Sage)
def A001590():
W = [0, 1, 0]
while True:
yield W[0]
W.append(sum(W))
W.pop(0)
a = A001590(); [next(a) for _ in range(38)] # Peter Luschny, Sep 12 2016
(Magma) I:=[0, 1, 0]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Apr 19 2018
(GAP) a:=[0, 1, 0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 24 2018
CROSSREFS
Sequence in context: A346736 A335628 A355560 * A078042 A047081 A115792
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Additional comments from Miklos Kristof, Jul 03 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 13:02 EDT 2024. Contains 371969 sequences. (Running on oeis4.)