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NOTE ON A NONLINEAR RECURRENCE RELATED TO +/2
R. L. GRAHAM and H. O. POLLAK, Bell Telephone Laboratories

In a recent study of sorting algorithms for a partially-sorted set, F. K.
Hwang and S. Lin [2] introduced the following sequence:

a =1, i1 = |:\/2a,,(a,. + 1):l, n=x1,

where [ - ] denotes the greatest integer function. Thus, the sequence begins

n12|3[4| [6|7|8|9|10|11:12113i
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One notes that asqy1—az.=2""! for 1 =726 and it might be conjectured that
this holds in general.

In this note we investigate the sequence {a,}. We obtain an explicit ex-
pression for a, from which the conjecture follows as well as the foliowing curious
result: @ani1— 2021 is just the nth digit in the binary expansion of /2.

We begin by making the preliminary observation that if S(a) denotes the
set of integers {[a], [2a], [3c], - - - } then everyv positive integer occurs in
exactly one of the two sets S(141/+/2) and S(1+ V/2). This follows from well-
known results for S(a) (cf. [1]) together with the fact that (14+1/+4/2)1
+(14+/2)"'=1 and 14++/2 is irrational. Thus, for any positive integer m there
exists a unique integer ¢ such that either m = [t(14+1/+/2)] or m = [t(1 +/2)].

THEOREM. Let ay=m, tni1= [V 2ax(an+1)], n21. Then

i e
[(n=Dr 4 20-D12)] i = |:t (1 + \/§>]
[tz 4 20-01)]  dfm = [t(1 + V/2)].

Proof. First note that since no integral square lies between

2024+ 2t and 2224+ 2L+ % =200+ 3)?

an =
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[V2e.(a, + D] = [v2(e. + D).
Thus we can assume
tny1 = [V2(an + B, n= 1
Suppose x =t(1+41/+/2) for some positive integer ¢. Then
(1) [(V2([=] + D] = [v2«]
Proof of (1). Let

¢ 14
=)
Then x = [x]+8. Also
V2Ze=11+~2), V2t—[Vv2i=¢
and
28 =0+ oy, a; =0 orl,

(i.e., B= s+ - - B =-ou3 - - - expressed base 2).
U [V2 4 D] [: V2 <z<1 +Vi§) P )}

5 . _ 1
iﬁl+[l\/2]=[l+[l\/2]+6’—\/2,8+ﬁ]

V2 1
7(,3 + ap) + T/E:l

1 1
iff 0 = 6’(1——_)+—_1— ]
[ Vi) T oAt e
The expression inside is 20. Also f’<1 so that the expression inside is
<1—1/+/2+1/+/2-1=1. . (1) holds.
Next, suppose x =4(1++/2), for some positive integer { Then
(1) [V2([«] + D] = [V2 «].

Proof of (1'). As before, let B’ =2 t—[x+/2]. Then x+/2=1t(2++/2) and
/2 —[x/2]=t/2— [Inv2] =5,

_ 1
iff 0 =8 — —|=|s-
0[5 vis+—| E

s () Aff (204 002] = [\/21(1 +2) — 28+ %]

iff 20+ [tv/2] = [2t+ [V2i] 48— \/§5+\%}

iff 0= [ﬁa —\/§)+%}
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.~ (1”) holds. Hence,

if m= |:t <1 + \/LQ)] =a, then .= [t(~v2+1)];

if m= [t(\/E—I— B]=a, then a4 = |:2t<1 + —\%):I

A minor induction argument on # now proves the theorem.
We point out that it is possible to express the conclusion of the theorem
in a somewhat more concise form:

If a;=m and @.41=[v20,(a.+1)] then
an = [T(z(n—l)IZ gt 2(,.—2)/2)]’ n>1,

where 7 is the mth smallest real number in the set 11,8, 30 0 AR, 234E,
34/2, - - - }. The first few values are:
m ‘ 1 ‘ ’ 8 ‘10 ‘ 11 | )
1|\/2 2\/2 4|3\/2|5|4\/2|6|7|5\/§ ;

“ The fact that for m =1, asmi1—2as1 is the nth digit in the binary expansion
of v/2 is now immediate (as is the fact @anq1— a2 =27"1).
It would be interesting to know if similar results hold for sequences defined
by

1 = [V3a.(a, + 1)], 1 = [V2aa(a, + 1)(a. + 2)], etc.
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